Tsung-Yu Hsieh, Yang-Yin Lin, Yu-Ting Liu, Chieh-Ning Fang, Chin-Teng Lin
{"title":"开发一种基于粒子群优化的运动想象任务多融合脑机接口系统","authors":"Tsung-Yu Hsieh, Yang-Yin Lin, Yu-Ting Liu, Chieh-Ning Fang, Chin-Teng Lin","doi":"10.1109/FUZZ-IEEE.2015.7337842","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Developing a novel multi-fusion brain-computer interface (BCI) system with particle swarm optimization for motor imagery task\",\"authors\":\"Tsung-Yu Hsieh, Yang-Yin Lin, Yu-Ting Liu, Chieh-Ning Fang, Chin-Teng Lin\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing a novel multi-fusion brain-computer interface (BCI) system with particle swarm optimization for motor imagery task
In this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.