开发一种基于粒子群优化的运动想象任务多融合脑机接口系统

Tsung-Yu Hsieh, Yang-Yin Lin, Yu-Ting Liu, Chieh-Ning Fang, Chin-Teng Lin
{"title":"开发一种基于粒子群优化的运动想象任务多融合脑机接口系统","authors":"Tsung-Yu Hsieh, Yang-Yin Lin, Yu-Ting Liu, Chieh-Ning Fang, Chin-Teng Lin","doi":"10.1109/FUZZ-IEEE.2015.7337842","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Developing a novel multi-fusion brain-computer interface (BCI) system with particle swarm optimization for motor imagery task\",\"authors\":\"Tsung-Yu Hsieh, Yang-Yin Lin, Yu-Ting Liu, Chieh-Ning Fang, Chin-Teng Lin\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于线性判别分析(LDA)的多融合脑机接口(BCI)来处理运动意象(MI)分类问题。在预处理阶段,我们结合滤波组和子带公共空间模式(SBCSP)对脑电数据进行特征提取,然后利用LDA分类器对脑活动进行分类,实现左、右手图像的识别。为了进一步提高系统的性能,采用模糊积分(FI)方法对信息源进行融合,并利用粒子群优化(PSO)算法对融合结构中的参数进行全局更新。因此,我们的实验结果表明,与其他方法相比,所提出的系统具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a novel multi-fusion brain-computer interface (BCI) system with particle swarm optimization for motor imagery task
In this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信