通过最优传输度量的不动点迭代的通用界

Mario Bravo, T. Champion, R. Cominetti
{"title":"通过最优传输度量的不动点迭代的通用界","authors":"Mario Bravo, T. Champion, R. Cominetti","doi":"10.23952/asvao.4.2022.3.04","DOIUrl":null,"url":null,"abstract":". We present a self-contained analysis of a particular family of metrics over the set of non-negative integers. We show that these metrics, which are defined through a nested sequence of optimal transport problems, provide tight estimates for general Krasnosel’skii-Mann fixed point iterations for non-expansive maps. We also describe some of their very special properties, including their monotonicity and the so-called convex quadrangle inequality that yields a greedy algorithm for computing them efficiently.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Universal bounds for fixed point iterations via optimal transport metrics\",\"authors\":\"Mario Bravo, T. Champion, R. Cominetti\",\"doi\":\"10.23952/asvao.4.2022.3.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We present a self-contained analysis of a particular family of metrics over the set of non-negative integers. We show that these metrics, which are defined through a nested sequence of optimal transport problems, provide tight estimates for general Krasnosel’skii-Mann fixed point iterations for non-expansive maps. We also describe some of their very special properties, including their monotonicity and the so-called convex quadrangle inequality that yields a greedy algorithm for computing them efficiently.\",\"PeriodicalId\":362333,\"journal\":{\"name\":\"Applied Set-Valued Analysis and Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Set-Valued Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23952/asvao.4.2022.3.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.4.2022.3.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 我们给出了非负整数集合上特定度量族的自包含分析。我们表明,这些指标是通过最优运输问题的嵌套序列定义的,为非扩张地图的一般Krasnosel’s skii- mann不动点迭代提供了严格的估计。我们还描述了它们的一些非常特殊的性质,包括它们的单调性和所谓的凸四边形不等式,它产生了一个贪婪算法来有效地计算它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal bounds for fixed point iterations via optimal transport metrics
. We present a self-contained analysis of a particular family of metrics over the set of non-negative integers. We show that these metrics, which are defined through a nested sequence of optimal transport problems, provide tight estimates for general Krasnosel’skii-Mann fixed point iterations for non-expansive maps. We also describe some of their very special properties, including their monotonicity and the so-called convex quadrangle inequality that yields a greedy algorithm for computing them efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信