深度学习提供抵御网络攻击的能力

S. Khanday, Hoor Fatima, N. Rakesh
{"title":"深度学习提供抵御网络攻击的能力","authors":"S. Khanday, Hoor Fatima, N. Rakesh","doi":"10.1109/ComPE53109.2021.9752099","DOIUrl":null,"url":null,"abstract":"During the Covid-19 pandemic world has witnessed the rise of cyber-attacks, especially during the Lockdown time course announced by the countries throughout the world, when almost every aspect of life changed the routine from offline to online. Protecting and securing information resources during pandemics has been a top priority for the modern computing world, with databases, banking, E-commerce and mailing services, etc. being the eye-catching credentials to the attackers. Apart from cryptography, machine learning and deep learning can offer an enormous amount of help in testing, training, and extracting negligible information from the data sets. Deep learning and machine learning have many methods and models in the account to detect and classify the different versions of cyber-attacks occasionally, from the datasets. Some of the most common deep learning methods inspired by the neural networks are Recurrent Neural Networks, Convolutional Neural Networks, Deep Belief Networks, Deep Boltzman Networks, Autoencoders, and Stacked Auto-encoders. Also counting machine learning algorithms into the account, there is a vast variety of algorithms that are meant to perform classification and regression. The survey will provide some of the most important deep learning and machine learning architectures used for Cyber-security and can offer protective services against cyber-attacks. The paper is a survey about various categories of cyber-attacks with a timeline of different attacks that took place in India and some of the other countries in the world. The final section of the report is about what deep learning methods can offer for developing and improving the security policies and examining vulnerabilities of an information system.","PeriodicalId":211704,"journal":{"name":"2021 International Conference on Computational Performance Evaluation (ComPE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning offering resilience from trending cyber-attacks, a review\",\"authors\":\"S. Khanday, Hoor Fatima, N. Rakesh\",\"doi\":\"10.1109/ComPE53109.2021.9752099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the Covid-19 pandemic world has witnessed the rise of cyber-attacks, especially during the Lockdown time course announced by the countries throughout the world, when almost every aspect of life changed the routine from offline to online. Protecting and securing information resources during pandemics has been a top priority for the modern computing world, with databases, banking, E-commerce and mailing services, etc. being the eye-catching credentials to the attackers. Apart from cryptography, machine learning and deep learning can offer an enormous amount of help in testing, training, and extracting negligible information from the data sets. Deep learning and machine learning have many methods and models in the account to detect and classify the different versions of cyber-attacks occasionally, from the datasets. Some of the most common deep learning methods inspired by the neural networks are Recurrent Neural Networks, Convolutional Neural Networks, Deep Belief Networks, Deep Boltzman Networks, Autoencoders, and Stacked Auto-encoders. Also counting machine learning algorithms into the account, there is a vast variety of algorithms that are meant to perform classification and regression. The survey will provide some of the most important deep learning and machine learning architectures used for Cyber-security and can offer protective services against cyber-attacks. The paper is a survey about various categories of cyber-attacks with a timeline of different attacks that took place in India and some of the other countries in the world. The final section of the report is about what deep learning methods can offer for developing and improving the security policies and examining vulnerabilities of an information system.\",\"PeriodicalId\":211704,\"journal\":{\"name\":\"2021 International Conference on Computational Performance Evaluation (ComPE)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Performance Evaluation (ComPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComPE53109.2021.9752099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE53109.2021.9752099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在2019冠状病毒病大流行期间,世界目睹了网络攻击的增加,特别是在世界各国宣布的封锁期间,几乎生活的各个方面都从线下转向线上。在大流行期间保护和保护信息资源一直是现代计算世界的首要任务,数据库、银行、电子商务和邮件服务等是攻击者最引人注目的凭据。除了密码学,机器学习和深度学习可以在测试、训练和从数据集中提取可忽略不计的信息方面提供大量帮助。深度学习和机器学习有许多方法和模型,可以偶尔从数据集中检测和分类不同版本的网络攻击。受神经网络启发的一些最常见的深度学习方法是循环神经网络、卷积神经网络、深度信念网络、深度玻尔兹曼网络、自编码器和堆叠自编码器。再算上机器学习算法,还有各种各样的算法用来执行分类和回归。该调查将提供一些用于网络安全的最重要的深度学习和机器学习架构,并可以提供针对网络攻击的保护服务。这篇论文是一篇关于各种类型的网络攻击的调查,并给出了发生在印度和世界上其他一些国家的不同攻击的时间轴。报告的最后一部分是关于深度学习方法可以为开发和改进安全策略以及检查信息系统的漏洞提供什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning offering resilience from trending cyber-attacks, a review
During the Covid-19 pandemic world has witnessed the rise of cyber-attacks, especially during the Lockdown time course announced by the countries throughout the world, when almost every aspect of life changed the routine from offline to online. Protecting and securing information resources during pandemics has been a top priority for the modern computing world, with databases, banking, E-commerce and mailing services, etc. being the eye-catching credentials to the attackers. Apart from cryptography, machine learning and deep learning can offer an enormous amount of help in testing, training, and extracting negligible information from the data sets. Deep learning and machine learning have many methods and models in the account to detect and classify the different versions of cyber-attacks occasionally, from the datasets. Some of the most common deep learning methods inspired by the neural networks are Recurrent Neural Networks, Convolutional Neural Networks, Deep Belief Networks, Deep Boltzman Networks, Autoencoders, and Stacked Auto-encoders. Also counting machine learning algorithms into the account, there is a vast variety of algorithms that are meant to perform classification and regression. The survey will provide some of the most important deep learning and machine learning architectures used for Cyber-security and can offer protective services against cyber-attacks. The paper is a survey about various categories of cyber-attacks with a timeline of different attacks that took place in India and some of the other countries in the world. The final section of the report is about what deep learning methods can offer for developing and improving the security policies and examining vulnerabilities of an information system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信