前馈神经网络学习绘制线条

Yiwei Chen, F. Bastani
{"title":"前馈神经网络学习绘制线条","authors":"Yiwei Chen, F. Bastani","doi":"10.1109/ICNN.1994.374218","DOIUrl":null,"url":null,"abstract":"The paper examines the capability and performance of 1-hidden-layer feedforward neural networks with multi-activation product (MAP) units, through the application of drawing digital line segments. The MAP unit is a recently proposed multi-dendrite neuron model. The centroidal function is chosen as the MAP unit base activation function because it demonstrates a superior performance over the sigmoidal functions. The network with MAP units with more than one dendrite converges statistically faster during the learning phase with randomly selected training patterns. The generalization to the entire sample space is shown to be proportional to the size of the training patterns.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feedforward neural networks to learn drawing lines\",\"authors\":\"Yiwei Chen, F. Bastani\",\"doi\":\"10.1109/ICNN.1994.374218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper examines the capability and performance of 1-hidden-layer feedforward neural networks with multi-activation product (MAP) units, through the application of drawing digital line segments. The MAP unit is a recently proposed multi-dendrite neuron model. The centroidal function is chosen as the MAP unit base activation function because it demonstrates a superior performance over the sigmoidal functions. The network with MAP units with more than one dendrite converges statistically faster during the learning phase with randomly selected training patterns. The generalization to the entire sample space is shown to be proportional to the size of the training patterns.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过绘制数字线段的应用,考察了具有多激活积(MAP)单元的1隐层前馈神经网络的能力和性能。MAP单元是最近提出的一种多树突神经元模型。选择质心函数作为MAP单元基激活函数是因为它比s型函数表现出更好的性能。在随机选择训练模式的学习阶段,具有多个树突的MAP单元的网络在统计上收敛得更快。对整个样本空间的泛化与训练模式的大小成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedforward neural networks to learn drawing lines
The paper examines the capability and performance of 1-hidden-layer feedforward neural networks with multi-activation product (MAP) units, through the application of drawing digital line segments. The MAP unit is a recently proposed multi-dendrite neuron model. The centroidal function is chosen as the MAP unit base activation function because it demonstrates a superior performance over the sigmoidal functions. The network with MAP units with more than one dendrite converges statistically faster during the learning phase with randomly selected training patterns. The generalization to the entire sample space is shown to be proportional to the size of the training patterns.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信