添加铌和钛对CHQ钢第二相颗粒形成的影响

S. Abro
{"title":"添加铌和钛对CHQ钢第二相颗粒形成的影响","authors":"S. Abro","doi":"10.22581/MUET1982.2101.03","DOIUrl":null,"url":null,"abstract":"It is common practice that formation of second phase particles such as nitrides or carbides in the steel matrix has significant role to control the grain size of steel. An attempt is made in the present research work to find out the role of nitrogen to form the nitride particles either with Al, Ti, B, Cr or Si. Two steel samples Steel-A and Steel-B with same titanium and aluminum weight percent in the chemical composition were obtained in hot rolled conditions from international market with only the difference of presence of Niobium in Steel-A. Solution heat treatment was performed at 1350°C with 60 minutes holding time in protherm heat treatment furnace available locally was used to dissolve the particles and then steel samples were reheat treated at 800°C with holding time of 60 minutes and water quenched and microstructure was revealed. Transmission electron microscope connected with Ehlers-Danlos Syndrome (EDS) was used to reveal the morphology of second phase particles. Both samples for a high resolution power Transmission Electron Microscopy (TEM) (Jeol JEM 3010) analysis were prepared by using carbon extraction replica method in 5% Nital solution as an etching technique. Both samples were then caught in copper grid of 3mm for using TEM analysis. TEM micrographs clearly revealed the second phase particles in the matrix of steel. The EDS peaks were studied and it was found that the peaks showed the titanium peaks in both the samples A and B and surprisingly there was no any peak found for aluminum. Stoichiometric calculations were carried out and it was found that weight percent nitrogen required for forming TiN is 0.0073, however the total nitrogen present in both the steels A and B is 0.0058 and 0.0061 respectively. That means that all the nitrogen present in the steel matrix was consumed by titanium to form the Titanium Nitride (TiN) so there was no nitrogen remain to fulfil the requirement of aluminum to form the Aluminum Nitride (AlN) particles.","PeriodicalId":436878,"journal":{"name":"January 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Niobium and Titanium Addition on Formation of Second Phase Particles in CHQ Steel Using Transmission Electron Microscope\",\"authors\":\"S. Abro\",\"doi\":\"10.22581/MUET1982.2101.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is common practice that formation of second phase particles such as nitrides or carbides in the steel matrix has significant role to control the grain size of steel. An attempt is made in the present research work to find out the role of nitrogen to form the nitride particles either with Al, Ti, B, Cr or Si. Two steel samples Steel-A and Steel-B with same titanium and aluminum weight percent in the chemical composition were obtained in hot rolled conditions from international market with only the difference of presence of Niobium in Steel-A. Solution heat treatment was performed at 1350°C with 60 minutes holding time in protherm heat treatment furnace available locally was used to dissolve the particles and then steel samples were reheat treated at 800°C with holding time of 60 minutes and water quenched and microstructure was revealed. Transmission electron microscope connected with Ehlers-Danlos Syndrome (EDS) was used to reveal the morphology of second phase particles. Both samples for a high resolution power Transmission Electron Microscopy (TEM) (Jeol JEM 3010) analysis were prepared by using carbon extraction replica method in 5% Nital solution as an etching technique. Both samples were then caught in copper grid of 3mm for using TEM analysis. TEM micrographs clearly revealed the second phase particles in the matrix of steel. The EDS peaks were studied and it was found that the peaks showed the titanium peaks in both the samples A and B and surprisingly there was no any peak found for aluminum. Stoichiometric calculations were carried out and it was found that weight percent nitrogen required for forming TiN is 0.0073, however the total nitrogen present in both the steels A and B is 0.0058 and 0.0061 respectively. That means that all the nitrogen present in the steel matrix was consumed by titanium to form the Titanium Nitride (TiN) so there was no nitrogen remain to fulfil the requirement of aluminum to form the Aluminum Nitride (AlN) particles.\",\"PeriodicalId\":436878,\"journal\":{\"name\":\"January 2021\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"January 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/MUET1982.2101.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"January 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/MUET1982.2101.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在钢基体中形成氮化物或碳化物等第二相颗粒对控制钢的晶粒尺寸具有重要作用。本研究试图找出氮在与Al、Ti、B、Cr或Si形成氮化物颗粒中的作用。在热轧条件下,从国际市场上获得了化学成分中钛铝含量相同的钢样品a钢和钢b钢,只是a钢中铌的含量不同。在1350℃固溶热处理炉中保温60分钟,溶解颗粒,然后在800℃固溶热处理60分钟,水淬,形成微观组织。利用透射电子显微镜结合ehers - danlos综合征(EDS)观察了第二相粒子的形貌。采用碳萃取复刻法在5%硝酸溶液中蚀刻制备了用于高分辨率透射电镜(TEM) (Jeol JEM 3010)分析的两种样品。然后将两个样品捕获在3mm的铜网格中进行TEM分析。TEM显微图清楚地显示了钢基体中的第二相颗粒。对EDS峰进行了研究,发现在A和B样品中都有钛峰,而令人惊讶的是没有发现铝峰。进行了化学计量计算,发现形成TiN所需的氮的重量百分比为0.0073,而钢A和钢B中存在的总氮分别为0.0058和0.0061。这意味着钢基体中存在的所有氮都被钛消耗以形成氮化钛(TiN),因此没有剩余的氮来满足铝形成氮化铝(AlN)颗粒的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Niobium and Titanium Addition on Formation of Second Phase Particles in CHQ Steel Using Transmission Electron Microscope
It is common practice that formation of second phase particles such as nitrides or carbides in the steel matrix has significant role to control the grain size of steel. An attempt is made in the present research work to find out the role of nitrogen to form the nitride particles either with Al, Ti, B, Cr or Si. Two steel samples Steel-A and Steel-B with same titanium and aluminum weight percent in the chemical composition were obtained in hot rolled conditions from international market with only the difference of presence of Niobium in Steel-A. Solution heat treatment was performed at 1350°C with 60 minutes holding time in protherm heat treatment furnace available locally was used to dissolve the particles and then steel samples were reheat treated at 800°C with holding time of 60 minutes and water quenched and microstructure was revealed. Transmission electron microscope connected with Ehlers-Danlos Syndrome (EDS) was used to reveal the morphology of second phase particles. Both samples for a high resolution power Transmission Electron Microscopy (TEM) (Jeol JEM 3010) analysis were prepared by using carbon extraction replica method in 5% Nital solution as an etching technique. Both samples were then caught in copper grid of 3mm for using TEM analysis. TEM micrographs clearly revealed the second phase particles in the matrix of steel. The EDS peaks were studied and it was found that the peaks showed the titanium peaks in both the samples A and B and surprisingly there was no any peak found for aluminum. Stoichiometric calculations were carried out and it was found that weight percent nitrogen required for forming TiN is 0.0073, however the total nitrogen present in both the steels A and B is 0.0058 and 0.0061 respectively. That means that all the nitrogen present in the steel matrix was consumed by titanium to form the Titanium Nitride (TiN) so there was no nitrogen remain to fulfil the requirement of aluminum to form the Aluminum Nitride (AlN) particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信