多模态肺图像检索的结构自适应特征提取与表示

Yang Song, Weidong (Tom) Cai, S. Eberl, M. Fulham, D. Feng
{"title":"多模态肺图像检索的结构自适应特征提取与表示","authors":"Yang Song, Weidong (Tom) Cai, S. Eberl, M. Fulham, D. Feng","doi":"10.1109/DICTA.2010.37","DOIUrl":null,"url":null,"abstract":"Content-based image retrieval (CBIR) has been an active research area since mid 90’s with major focus on feature extraction, due to its significant impact on image retrieval performance. When applying CBIR in the medical domain, different imaging modalities and anatomical regions require different feature extraction methods that integrate some domain-specific knowledge for effective image retrieval. This paper presents some new CBIR techniques for positron emission tomography - computed tomography (PET-CT) lung images, which exhibit special characteristics such as similar image intensities of lung tumors and soft tissues. Adaptive texture feature extraction and structural signature representation are proposed, and implemented based on our recently developed CBIR framework. Evaluation of the method on clinical data from lung cancer patients with various disease stages demonstrates its benefits.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structure-Adaptive Feature Extraction and Representation for Multi-modality Lung Images Retrieval\",\"authors\":\"Yang Song, Weidong (Tom) Cai, S. Eberl, M. Fulham, D. Feng\",\"doi\":\"10.1109/DICTA.2010.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-based image retrieval (CBIR) has been an active research area since mid 90’s with major focus on feature extraction, due to its significant impact on image retrieval performance. When applying CBIR in the medical domain, different imaging modalities and anatomical regions require different feature extraction methods that integrate some domain-specific knowledge for effective image retrieval. This paper presents some new CBIR techniques for positron emission tomography - computed tomography (PET-CT) lung images, which exhibit special characteristics such as similar image intensities of lung tumors and soft tissues. Adaptive texture feature extraction and structural signature representation are proposed, and implemented based on our recently developed CBIR framework. Evaluation of the method on clinical data from lung cancer patients with various disease stages demonstrates its benefits.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于内容的图像检索(CBIR)自上世纪90年代中期以来一直是一个活跃的研究领域,主要集中在特征提取方面,因为它对图像检索的性能有很大的影响。在医学领域应用CBIR时,不同的成像方式和解剖区域需要不同的特征提取方法,这些方法集成了一些特定领域的知识,以实现有效的图像检索。本文介绍了一些用于正电子发射断层扫描的新的CBIR技术-计算机断层扫描(PET-CT)肺部图像,该技术具有肺部肿瘤和软组织图像强度相似的特点。提出了自适应纹理特征提取和结构特征表示方法,并在此基础上实现了该方法。通过对不同疾病阶段肺癌患者临床资料的评估,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-Adaptive Feature Extraction and Representation for Multi-modality Lung Images Retrieval
Content-based image retrieval (CBIR) has been an active research area since mid 90’s with major focus on feature extraction, due to its significant impact on image retrieval performance. When applying CBIR in the medical domain, different imaging modalities and anatomical regions require different feature extraction methods that integrate some domain-specific knowledge for effective image retrieval. This paper presents some new CBIR techniques for positron emission tomography - computed tomography (PET-CT) lung images, which exhibit special characteristics such as similar image intensities of lung tumors and soft tissues. Adaptive texture feature extraction and structural signature representation are proposed, and implemented based on our recently developed CBIR framework. Evaluation of the method on clinical data from lung cancer patients with various disease stages demonstrates its benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信