无人机进行风影响圆形拖曳的最优路径

Mariann Merz, T. Johansen
{"title":"无人机进行风影响圆形拖曳的最优路径","authors":"Mariann Merz, T. Johansen","doi":"10.1109/RED-UAS.2017.8101638","DOIUrl":null,"url":null,"abstract":"This paper considers the dynamic optimization of the planned path for an Unmanned Aerial Vehicle (UAV) engaged in circular towing of a cable-body system, such that the motion of the towed endmass is stabilized with minimum motion relative to a desired target position. The ultimate research objective is to develop a concept to enable a fixed wing UAV to be used for end body precision positioning maneuvers such as object pickup/dropoff in order to extend the possible range for this type of missions. While solving for the UAV path that minimizes the towed object orbit in the absence of wind or other disturbances is fairly straight forward, obtaining the desired UAV path when subjected to winds is a challenging problem. The main contribution of this paper is to define a robust UAV path planning strategy that results in minimal motion of the towed endbody about a ground-fixed target position.","PeriodicalId":299104,"journal":{"name":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal path of a UAV engaged in wind-influenced circular towing\",\"authors\":\"Mariann Merz, T. Johansen\",\"doi\":\"10.1109/RED-UAS.2017.8101638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the dynamic optimization of the planned path for an Unmanned Aerial Vehicle (UAV) engaged in circular towing of a cable-body system, such that the motion of the towed endmass is stabilized with minimum motion relative to a desired target position. The ultimate research objective is to develop a concept to enable a fixed wing UAV to be used for end body precision positioning maneuvers such as object pickup/dropoff in order to extend the possible range for this type of missions. While solving for the UAV path that minimizes the towed object orbit in the absence of wind or other disturbances is fairly straight forward, obtaining the desired UAV path when subjected to winds is a challenging problem. The main contribution of this paper is to define a robust UAV path planning strategy that results in minimal motion of the towed endbody about a ground-fixed target position.\",\"PeriodicalId\":299104,\"journal\":{\"name\":\"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED-UAS.2017.8101638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2017.8101638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了用于索体系统环形拖曳的无人机规划路径的动态优化问题,使被拖曳端质量的运动稳定,相对于期望目标位置的运动最小。最终的研究目标是发展一种概念,使固定翼无人机能够用于末端体精确定位机动,例如物体拾取/投掷,以便扩展这种类型任务的可能范围。虽然在没有风或其他干扰的情况下求解最小化被拖物体轨道的无人机路径相当简单,但在受到风的影响时获得所需的无人机路径是一个具有挑战性的问题。本文的主要贡献是定义了一种鲁棒的无人机路径规划策略,使被拖端体在地面固定目标位置上的运动最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal path of a UAV engaged in wind-influenced circular towing
This paper considers the dynamic optimization of the planned path for an Unmanned Aerial Vehicle (UAV) engaged in circular towing of a cable-body system, such that the motion of the towed endmass is stabilized with minimum motion relative to a desired target position. The ultimate research objective is to develop a concept to enable a fixed wing UAV to be used for end body precision positioning maneuvers such as object pickup/dropoff in order to extend the possible range for this type of missions. While solving for the UAV path that minimizes the towed object orbit in the absence of wind or other disturbances is fairly straight forward, obtaining the desired UAV path when subjected to winds is a challenging problem. The main contribution of this paper is to define a robust UAV path planning strategy that results in minimal motion of the towed endbody about a ground-fixed target position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信