{"title":"无人机进行风影响圆形拖曳的最优路径","authors":"Mariann Merz, T. Johansen","doi":"10.1109/RED-UAS.2017.8101638","DOIUrl":null,"url":null,"abstract":"This paper considers the dynamic optimization of the planned path for an Unmanned Aerial Vehicle (UAV) engaged in circular towing of a cable-body system, such that the motion of the towed endmass is stabilized with minimum motion relative to a desired target position. The ultimate research objective is to develop a concept to enable a fixed wing UAV to be used for end body precision positioning maneuvers such as object pickup/dropoff in order to extend the possible range for this type of missions. While solving for the UAV path that minimizes the towed object orbit in the absence of wind or other disturbances is fairly straight forward, obtaining the desired UAV path when subjected to winds is a challenging problem. The main contribution of this paper is to define a robust UAV path planning strategy that results in minimal motion of the towed endbody about a ground-fixed target position.","PeriodicalId":299104,"journal":{"name":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal path of a UAV engaged in wind-influenced circular towing\",\"authors\":\"Mariann Merz, T. Johansen\",\"doi\":\"10.1109/RED-UAS.2017.8101638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the dynamic optimization of the planned path for an Unmanned Aerial Vehicle (UAV) engaged in circular towing of a cable-body system, such that the motion of the towed endmass is stabilized with minimum motion relative to a desired target position. The ultimate research objective is to develop a concept to enable a fixed wing UAV to be used for end body precision positioning maneuvers such as object pickup/dropoff in order to extend the possible range for this type of missions. While solving for the UAV path that minimizes the towed object orbit in the absence of wind or other disturbances is fairly straight forward, obtaining the desired UAV path when subjected to winds is a challenging problem. The main contribution of this paper is to define a robust UAV path planning strategy that results in minimal motion of the towed endbody about a ground-fixed target position.\",\"PeriodicalId\":299104,\"journal\":{\"name\":\"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED-UAS.2017.8101638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2017.8101638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal path of a UAV engaged in wind-influenced circular towing
This paper considers the dynamic optimization of the planned path for an Unmanned Aerial Vehicle (UAV) engaged in circular towing of a cable-body system, such that the motion of the towed endmass is stabilized with minimum motion relative to a desired target position. The ultimate research objective is to develop a concept to enable a fixed wing UAV to be used for end body precision positioning maneuvers such as object pickup/dropoff in order to extend the possible range for this type of missions. While solving for the UAV path that minimizes the towed object orbit in the absence of wind or other disturbances is fairly straight forward, obtaining the desired UAV path when subjected to winds is a challenging problem. The main contribution of this paper is to define a robust UAV path planning strategy that results in minimal motion of the towed endbody about a ground-fixed target position.