{"title":"基于分形纹理分解和极限学习机的心脏学分析","authors":"Zafer Cömert, A. F. Kocamaz","doi":"10.1109/SIU.2017.7960397","DOIUrl":null,"url":null,"abstract":"Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, 79.92% of specificity, and 80.95% of sensitivity were obtained. It was observed that the SFTA offers useful statistical features to distinguish normal and hypoxic fetuses.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine\",\"authors\":\"Zafer Cömert, A. F. Kocamaz\",\"doi\":\"10.1109/SIU.2017.7960397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, 79.92% of specificity, and 80.95% of sensitivity were obtained. It was observed that the SFTA offers useful statistical features to distinguish normal and hypoxic fetuses.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine
Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, 79.92% of specificity, and 80.95% of sensitivity were obtained. It was observed that the SFTA offers useful statistical features to distinguish normal and hypoxic fetuses.