无监督域自适应人再识别的协同特征学习与可信软标记

Haijian Wang, Meng Yang
{"title":"无监督域自适应人再识别的协同特征学习与可信软标记","authors":"Haijian Wang, Meng Yang","doi":"10.1109/IJCB52358.2021.9484375","DOIUrl":null,"url":null,"abstract":"Cross-domain person ReID remains a challenging task for its difficulty in transferring knowledge from labeled source domain to unlabeled target domain. Aiming at the problem of weak interaction of cross-domain feature learning and inaccurate pseudo-label estimation in target domain, we propose a novel framework termed Collaborative Feature Learning and Credible Soft Labeling (CFSL) to achieve efficient domain adaptation for ReID. By designing a Collaborative Feature Extraction (CFE) module, a more powerful and discriminative image description is generated. Specifically, CFE jointly learn robust features by integrating both global and local clues on two domains and mining both cross-domain invariant features and domain-specific features. Moreover, we exploit a Dual Soft Labeling (DSL) strategy in target branch to obtain more credible and reliable identity estimations. Experimental results demonstrate the effectiveness of our method and show significant performance improvements over state-of-the-art methods on two public benchmarks.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Feature Learning and Credible Soft Labeling for Unsupervised Domain Adaptive Person Re-Identification\",\"authors\":\"Haijian Wang, Meng Yang\",\"doi\":\"10.1109/IJCB52358.2021.9484375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-domain person ReID remains a challenging task for its difficulty in transferring knowledge from labeled source domain to unlabeled target domain. Aiming at the problem of weak interaction of cross-domain feature learning and inaccurate pseudo-label estimation in target domain, we propose a novel framework termed Collaborative Feature Learning and Credible Soft Labeling (CFSL) to achieve efficient domain adaptation for ReID. By designing a Collaborative Feature Extraction (CFE) module, a more powerful and discriminative image description is generated. Specifically, CFE jointly learn robust features by integrating both global and local clues on two domains and mining both cross-domain invariant features and domain-specific features. Moreover, we exploit a Dual Soft Labeling (DSL) strategy in target branch to obtain more credible and reliable identity estimations. Experimental results demonstrate the effectiveness of our method and show significant performance improvements over state-of-the-art methods on two public benchmarks.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨领域人的知识识别由于其难以将知识从有标记的源领域转移到无标记的目标领域而成为一项具有挑战性的任务。针对跨域特征学习弱交互和目标域伪标签估计不准确的问题,提出了一种基于协同特征学习和可信软标记(CFSL)的协同特征学习和可信软标记(CFSL)框架,实现了ReID的高效域自适应。通过设计协同特征提取(CFE)模块,生成更强大的判别图像描述。具体来说,CFE通过整合两个域上的全局和局部线索,挖掘跨域不变特征和特定于域的特征,共同学习鲁棒特征。此外,我们在目标分支中利用双软标记(DSL)策略来获得更可信和可靠的身份估计。实验结果证明了我们的方法的有效性,并在两个公共基准上显示了比最先进的方法显著的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Feature Learning and Credible Soft Labeling for Unsupervised Domain Adaptive Person Re-Identification
Cross-domain person ReID remains a challenging task for its difficulty in transferring knowledge from labeled source domain to unlabeled target domain. Aiming at the problem of weak interaction of cross-domain feature learning and inaccurate pseudo-label estimation in target domain, we propose a novel framework termed Collaborative Feature Learning and Credible Soft Labeling (CFSL) to achieve efficient domain adaptation for ReID. By designing a Collaborative Feature Extraction (CFE) module, a more powerful and discriminative image description is generated. Specifically, CFE jointly learn robust features by integrating both global and local clues on two domains and mining both cross-domain invariant features and domain-specific features. Moreover, we exploit a Dual Soft Labeling (DSL) strategy in target branch to obtain more credible and reliable identity estimations. Experimental results demonstrate the effectiveness of our method and show significant performance improvements over state-of-the-art methods on two public benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信