平面上最小代价完美匹配的分治算法

Kasturi R. Varadarajan
{"title":"平面上最小代价完美匹配的分治算法","authors":"Kasturi R. Varadarajan","doi":"10.1109/SFCS.1998.743466","DOIUrl":null,"url":null,"abstract":"Given a set V of 2n points in the plane, the min-cost perfect matching problem is to pair up the points (into n pairs) so that the sum of the Euclidean distances between the paired points is minimized. We present an O(n/sup 3/2/log/sup 5/ n)-time algorithm for computing a min-cost perfect matching in the plane, which is an improvement over the previous best algorithm of Vaidya [1989) by nearly a factor of n. Vaidya's algorithm is an implementation of the algorithm of Edmonds (1965), which runs in n phases, and computes a matching with i edges at the end of the i-th phase. Vaidya shows that geometry can be exploited to implement a single phase in roughly O(n/sup 3/2/) time, thus obtaining an O(n/sup 5/2/log/sup 4/ n)-time algorithm. We improve upon this in two major ways. First, we develop a variant of Edmonds algorithm that uses geometric divide-and-conquer, so that in the conquer step we need only O(/spl radic/n) phases. Second, we show that a single phase can be implemented in O(n log/sup 5/ n) time.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"A divide-and-conquer algorithm for min-cost perfect matching in the plane\",\"authors\":\"Kasturi R. Varadarajan\",\"doi\":\"10.1109/SFCS.1998.743466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set V of 2n points in the plane, the min-cost perfect matching problem is to pair up the points (into n pairs) so that the sum of the Euclidean distances between the paired points is minimized. We present an O(n/sup 3/2/log/sup 5/ n)-time algorithm for computing a min-cost perfect matching in the plane, which is an improvement over the previous best algorithm of Vaidya [1989) by nearly a factor of n. Vaidya's algorithm is an implementation of the algorithm of Edmonds (1965), which runs in n phases, and computes a matching with i edges at the end of the i-th phase. Vaidya shows that geometry can be exploited to implement a single phase in roughly O(n/sup 3/2/) time, thus obtaining an O(n/sup 5/2/log/sup 4/ n)-time algorithm. We improve upon this in two major ways. First, we develop a variant of Edmonds algorithm that uses geometric divide-and-conquer, so that in the conquer step we need only O(/spl radic/n) phases. Second, we show that a single phase can be implemented in O(n log/sup 5/ n) time.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

给定平面上2n个点的集合V,最小代价完美匹配问题是将这些点配对(成n对),使配对点之间的欧几里得距离之和最小。我们提出了一种O(n/sup 3/2/log/sup 5/ n)时间算法来计算平面上的最小代价完美匹配,该算法比之前的最佳算法Vaidya[1989]改进了近n倍。Vaidya算法是Edmonds(1965)算法的实现,该算法分n个阶段运行,并在第i阶段结束时计算i条边的匹配。Vaidya表明,可以利用几何原理在大约O(n/sup 3/2/)时间内实现单个相位,从而获得O(n/sup 5/2/log/sup 4/ n)时间算法。我们从两个主要方面改进了这一点。首先,我们开发了一种使用几何分治算法的Edmonds算法变体,因此在征服步骤中我们只需要O(/spl径向/n)相位。其次,我们证明了单相可以在O(n log/sup 5/ n)时间内实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A divide-and-conquer algorithm for min-cost perfect matching in the plane
Given a set V of 2n points in the plane, the min-cost perfect matching problem is to pair up the points (into n pairs) so that the sum of the Euclidean distances between the paired points is minimized. We present an O(n/sup 3/2/log/sup 5/ n)-time algorithm for computing a min-cost perfect matching in the plane, which is an improvement over the previous best algorithm of Vaidya [1989) by nearly a factor of n. Vaidya's algorithm is an implementation of the algorithm of Edmonds (1965), which runs in n phases, and computes a matching with i edges at the end of the i-th phase. Vaidya shows that geometry can be exploited to implement a single phase in roughly O(n/sup 3/2/) time, thus obtaining an O(n/sup 5/2/log/sup 4/ n)-time algorithm. We improve upon this in two major ways. First, we develop a variant of Edmonds algorithm that uses geometric divide-and-conquer, so that in the conquer step we need only O(/spl radic/n) phases. Second, we show that a single phase can be implemented in O(n log/sup 5/ n) time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信