[两栖动物的皮肤作为治疗肽的来源]。

M. Amiche
{"title":"[两栖动物的皮肤作为治疗肽的来源]。","authors":"M. Amiche","doi":"10.1051/jbio/2016015","DOIUrl":null,"url":null,"abstract":"The search for new bioactive molecules that could be used in therapeutics is a major public health issue, particularly in the treatment of certain diseases such as cancer. In this context the exploration of the venom of animals (snakes, amphibians, cones, scorpions, insects...) that produce molecules of various structures and biological activities, is a very promising direction. Research in this area led to the discovery of neuropeptides, hormones, toxins, antimicrobial peptides and other extremely potent mediators. These are now used in many areas both in fundamental research and in translational research, respectively, to understand biochemical and physiological mechanisms, or to use as medical diagnostic tools and for therapeutic purposes. Pr. V. Erspamer is the first researcher to have shown, in the 1930s, that in addition to biogenic amines and alkaloids, granular glands from the skin of amphibians also produced huge amounts of peptides with various structures and biological activities. He also showed that these peptides had their counterparts, most often in the form of identical or similar peptides, in the central nervous system and the gastrointestinal tract of mammals. These observations are summarized in the form of a triangle concept of \"brain-gut-skin\" that states that any peptide found in a compartment should be present in the other two. In addition, abundance, ease of extraction and identification of peptides from amphibian skin make this model a means to search for their counterparts in mammals where they are present in minute quantities. This approach has two advantages: (i) at the fundamental level, the large peptide diversity, ubiquity and multiplicity of functions to which they participate, constitute a true chemical library to understand the mechanisms of recognition and signal transduction and study the physicochemical basic of the specificity; and (ii) in terms of applications, the relative simplicity of these peptides and the rise of the production techniques by chemical or recombinant synthesis offer an innovative potential for the development of molecules with pharmacological or therapeutic purposes.","PeriodicalId":150011,"journal":{"name":"Biologie aujourd'hui","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"[Amphibian skin as a source of therapeutic peptides].\",\"authors\":\"M. Amiche\",\"doi\":\"10.1051/jbio/2016015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for new bioactive molecules that could be used in therapeutics is a major public health issue, particularly in the treatment of certain diseases such as cancer. In this context the exploration of the venom of animals (snakes, amphibians, cones, scorpions, insects...) that produce molecules of various structures and biological activities, is a very promising direction. Research in this area led to the discovery of neuropeptides, hormones, toxins, antimicrobial peptides and other extremely potent mediators. These are now used in many areas both in fundamental research and in translational research, respectively, to understand biochemical and physiological mechanisms, or to use as medical diagnostic tools and for therapeutic purposes. Pr. V. Erspamer is the first researcher to have shown, in the 1930s, that in addition to biogenic amines and alkaloids, granular glands from the skin of amphibians also produced huge amounts of peptides with various structures and biological activities. He also showed that these peptides had their counterparts, most often in the form of identical or similar peptides, in the central nervous system and the gastrointestinal tract of mammals. These observations are summarized in the form of a triangle concept of \\\"brain-gut-skin\\\" that states that any peptide found in a compartment should be present in the other two. In addition, abundance, ease of extraction and identification of peptides from amphibian skin make this model a means to search for their counterparts in mammals where they are present in minute quantities. This approach has two advantages: (i) at the fundamental level, the large peptide diversity, ubiquity and multiplicity of functions to which they participate, constitute a true chemical library to understand the mechanisms of recognition and signal transduction and study the physicochemical basic of the specificity; and (ii) in terms of applications, the relative simplicity of these peptides and the rise of the production techniques by chemical or recombinant synthesis offer an innovative potential for the development of molecules with pharmacological or therapeutic purposes.\",\"PeriodicalId\":150011,\"journal\":{\"name\":\"Biologie aujourd'hui\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologie aujourd'hui\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/jbio/2016015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologie aujourd'hui","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jbio/2016015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

寻找可用于治疗的新生物活性分子是一个重大的公共卫生问题,特别是在治疗某些疾病(如癌症)方面。在这种情况下,探索产生各种结构和生物活性分子的动物(蛇、两栖动物、锥类动物、蝎子、昆虫……)的毒液是一个非常有前途的方向。在这一领域的研究导致了神经肽、激素、毒素、抗菌肽和其他非常有效的介质的发现。它们现在分别用于基础研究和转化研究的许多领域,以了解生化和生理机制,或用作医疗诊断工具和用于治疗目的。在20世纪30年代,dr . V. Erspamer是第一个证明,除了生物胺和生物碱,来自两栖动物皮肤的颗粒状腺体也能产生大量具有各种结构和生物活性的肽的研究者。他还指出,在哺乳动物的中枢神经系统和胃肠道中,这些多肽通常以相同或相似的多肽形式存在。这些观察结果以“脑-肠-皮”三角形概念的形式进行了总结,即在一个隔间中发现的任何肽都应该存在于其他两个隔间中。此外,从两栖动物皮肤中提取和鉴定的多肽丰富、容易,使该模型成为在哺乳动物中寻找同类肽的一种手段,因为它们的数量很少。该方法有两个优势:(1)在基础层面上,肽的巨大多样性、它们参与的功能的普遍性和多样性,构成了一个真正的化学文库,可以理解识别和信号转导的机制,研究特异性的物理化学基础;(ii)在应用方面,这些肽的相对简单性以及化学或重组合成生产技术的兴起为开发具有药理或治疗目的的分子提供了创新潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Amphibian skin as a source of therapeutic peptides].
The search for new bioactive molecules that could be used in therapeutics is a major public health issue, particularly in the treatment of certain diseases such as cancer. In this context the exploration of the venom of animals (snakes, amphibians, cones, scorpions, insects...) that produce molecules of various structures and biological activities, is a very promising direction. Research in this area led to the discovery of neuropeptides, hormones, toxins, antimicrobial peptides and other extremely potent mediators. These are now used in many areas both in fundamental research and in translational research, respectively, to understand biochemical and physiological mechanisms, or to use as medical diagnostic tools and for therapeutic purposes. Pr. V. Erspamer is the first researcher to have shown, in the 1930s, that in addition to biogenic amines and alkaloids, granular glands from the skin of amphibians also produced huge amounts of peptides with various structures and biological activities. He also showed that these peptides had their counterparts, most often in the form of identical or similar peptides, in the central nervous system and the gastrointestinal tract of mammals. These observations are summarized in the form of a triangle concept of "brain-gut-skin" that states that any peptide found in a compartment should be present in the other two. In addition, abundance, ease of extraction and identification of peptides from amphibian skin make this model a means to search for their counterparts in mammals where they are present in minute quantities. This approach has two advantages: (i) at the fundamental level, the large peptide diversity, ubiquity and multiplicity of functions to which they participate, constitute a true chemical library to understand the mechanisms of recognition and signal transduction and study the physicochemical basic of the specificity; and (ii) in terms of applications, the relative simplicity of these peptides and the rise of the production techniques by chemical or recombinant synthesis offer an innovative potential for the development of molecules with pharmacological or therapeutic purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信