通过比赛选择改进了antlion优化算法

Haydar Kiliç, U. Yuzgec
{"title":"通过比赛选择改进了antlion优化算法","authors":"Haydar Kiliç, U. Yuzgec","doi":"10.1109/CICN.2017.8319385","DOIUrl":null,"url":null,"abstract":"From the measurement point of view, it is observed that antlion optimization algorithm (ALO) runs slower than other heuristic algorithms and it needs to be improved in terms of optimality and accuracy. For this reason, improved antlion optimization algorithm via tournament selection (IALOT) is presented in this study. IALOT, ALO, particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms have been evaluated using benchmark test functions such as time, optimality, accuracy, CPU time, number of function evaluations (NFE), mean best solution and standard deviation. In summary, elite antlion selection, random walks, and other parts of the antlion optimization algorithm have been developed. As a result, the IALOT algorithm has shown better results than ALO algorithm.","PeriodicalId":339750,"journal":{"name":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improved antlion optimization algorithm via tournament selection\",\"authors\":\"Haydar Kiliç, U. Yuzgec\",\"doi\":\"10.1109/CICN.2017.8319385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the measurement point of view, it is observed that antlion optimization algorithm (ALO) runs slower than other heuristic algorithms and it needs to be improved in terms of optimality and accuracy. For this reason, improved antlion optimization algorithm via tournament selection (IALOT) is presented in this study. IALOT, ALO, particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms have been evaluated using benchmark test functions such as time, optimality, accuracy, CPU time, number of function evaluations (NFE), mean best solution and standard deviation. In summary, elite antlion selection, random walks, and other parts of the antlion optimization algorithm have been developed. As a result, the IALOT algorithm has shown better results than ALO algorithm.\",\"PeriodicalId\":339750,\"journal\":{\"name\":\"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2017.8319385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2017.8319385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从测量的角度来看,antlion优化算法(ALO)的运行速度比其他启发式算法要慢,在最优性和精度方面有待改进。为此,本文提出了一种基于锦标赛选择的改进蚁群优化算法(IALOT)。采用基准测试函数,如时间、最优性、精度、CPU时间、函数评估次数(NFE)、平均最优解和标准差,对IALOT、ALO、粒子群优化(PSO)和人工蜂群(ABC)算法进行了评估。综上所述,精英蚁群选择、随机漫步和蚁群优化算法的其他部分已经开发出来。结果表明,IALOT算法比ALO算法表现出更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved antlion optimization algorithm via tournament selection
From the measurement point of view, it is observed that antlion optimization algorithm (ALO) runs slower than other heuristic algorithms and it needs to be improved in terms of optimality and accuracy. For this reason, improved antlion optimization algorithm via tournament selection (IALOT) is presented in this study. IALOT, ALO, particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms have been evaluated using benchmark test functions such as time, optimality, accuracy, CPU time, number of function evaluations (NFE), mean best solution and standard deviation. In summary, elite antlion selection, random walks, and other parts of the antlion optimization algorithm have been developed. As a result, the IALOT algorithm has shown better results than ALO algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信