{"title":"基于张量的MIMO认知无线网络频谱感知技术","authors":"T. Getu, W. Ajib, R. Landry, Georges Kaddoum","doi":"10.1109/GlobalSIP45357.2019.8969440","DOIUrl":null,"url":null,"abstract":"Despite the numerous spectrum sensing techniques, the existing techniques fail in providing an efficient spectrum sensing whenever a hidden terminal problem arises. Meanwhile, this problem can happen at any time in any severely fading primary-to-secondary channels resulting in very low primary signal-to-noise ratios (SNRs) and hence ineffective detection of the primary user in a cognitive radio (CR). Towards overcoming this problem, by introducing a tensor-based hypothesis testing framework, this paper proposes an efficient tensor-based detector (TBD) for a multiple-input multiple-output (MIMO) CR networks over multi-path fading channels. Monte-Carlo simulations demonstrate that TBD outperforms the generalized likelihood ratio test (GLRT) detector and maximum-minimum eigenvalue (MME) detector, especially in the very low SNR regime which is a manifestation of the hidden terminal problem.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tensor-Based Spectrum Sensing Technique for MIMO Cognitive Radio Networks\",\"authors\":\"T. Getu, W. Ajib, R. Landry, Georges Kaddoum\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the numerous spectrum sensing techniques, the existing techniques fail in providing an efficient spectrum sensing whenever a hidden terminal problem arises. Meanwhile, this problem can happen at any time in any severely fading primary-to-secondary channels resulting in very low primary signal-to-noise ratios (SNRs) and hence ineffective detection of the primary user in a cognitive radio (CR). Towards overcoming this problem, by introducing a tensor-based hypothesis testing framework, this paper proposes an efficient tensor-based detector (TBD) for a multiple-input multiple-output (MIMO) CR networks over multi-path fading channels. Monte-Carlo simulations demonstrate that TBD outperforms the generalized likelihood ratio test (GLRT) detector and maximum-minimum eigenvalue (MME) detector, especially in the very low SNR regime which is a manifestation of the hidden terminal problem.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tensor-Based Spectrum Sensing Technique for MIMO Cognitive Radio Networks
Despite the numerous spectrum sensing techniques, the existing techniques fail in providing an efficient spectrum sensing whenever a hidden terminal problem arises. Meanwhile, this problem can happen at any time in any severely fading primary-to-secondary channels resulting in very low primary signal-to-noise ratios (SNRs) and hence ineffective detection of the primary user in a cognitive radio (CR). Towards overcoming this problem, by introducing a tensor-based hypothesis testing framework, this paper proposes an efficient tensor-based detector (TBD) for a multiple-input multiple-output (MIMO) CR networks over multi-path fading channels. Monte-Carlo simulations demonstrate that TBD outperforms the generalized likelihood ratio test (GLRT) detector and maximum-minimum eigenvalue (MME) detector, especially in the very low SNR regime which is a manifestation of the hidden terminal problem.