T. Raszkowski, M. Zubert, A. Samson, M. Janicki, A. Napieralski
{"title":"无空腔测试微芯片结构的DPL热模型,用于纳米电子电路热性能的估计","authors":"T. Raszkowski, M. Zubert, A. Samson, M. Janicki, A. Napieralski","doi":"10.1109/THERMINIC.2016.7749039","DOIUrl":null,"url":null,"abstract":"This paper presents the comparison of the temperature distribution in the test structure chip obtained using Fourier-Kirchhoff and Dual-Phase-Lag heat transfer models. The investigated test structure consisting of two polysilicon resistors used as the heater and thermometer, which are located inside the silicon dioxide layer. The simulation results are compared with those which have been received using similar test structure containing two platinum resistors. Some numerical problems observed during the simulation of Dual-Phase-Lag heat transfer model have been also briefly presented.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"DPL thermal model of test microchip structure without cavity dedicated to estimation of nanoelectronic circuits thermal properties\",\"authors\":\"T. Raszkowski, M. Zubert, A. Samson, M. Janicki, A. Napieralski\",\"doi\":\"10.1109/THERMINIC.2016.7749039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the comparison of the temperature distribution in the test structure chip obtained using Fourier-Kirchhoff and Dual-Phase-Lag heat transfer models. The investigated test structure consisting of two polysilicon resistors used as the heater and thermometer, which are located inside the silicon dioxide layer. The simulation results are compared with those which have been received using similar test structure containing two platinum resistors. Some numerical problems observed during the simulation of Dual-Phase-Lag heat transfer model have been also briefly presented.\",\"PeriodicalId\":143150,\"journal\":{\"name\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC.2016.7749039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DPL thermal model of test microchip structure without cavity dedicated to estimation of nanoelectronic circuits thermal properties
This paper presents the comparison of the temperature distribution in the test structure chip obtained using Fourier-Kirchhoff and Dual-Phase-Lag heat transfer models. The investigated test structure consisting of two polysilicon resistors used as the heater and thermometer, which are located inside the silicon dioxide layer. The simulation results are compared with those which have been received using similar test structure containing two platinum resistors. Some numerical problems observed during the simulation of Dual-Phase-Lag heat transfer model have been also briefly presented.