基于信号周期测量的静脉输液给药量控制系统

L. Umar, V. A. Rosandi, R. N. Setiadi, Zulharman Zulharman
{"title":"基于信号周期测量的静脉输液给药量控制系统","authors":"L. Umar, V. A. Rosandi, R. N. Setiadi, Zulharman Zulharman","doi":"10.21009/spektra.072.04","DOIUrl":null,"url":null,"abstract":"Intravenous fluid therapy is a commonly used treatment modality that is used in the treatment of hospitalized patients. Intravenous flow rates are often controlled by counting the number of fluid drops in a drip chamber while adjusting the intravenous line with a watch. In this research, an intravenous infusion dosing system was designed based on periodic signal measurement using a pair of light couplers consisting of a transmitter and a receiver. The transmitter is built using an infrared LED (BPV10NF), while the receiver uses an infrared photodiode detector (BPW34). The infusion droplet will pass a slit between the two coupler components and interrupt the light transmission from the transmitter to the receiver, which will affect the current through the photodiode and change the output status of the circuits. The parameters obtained from this circuit signal are droplet frequency from 1 Hz to 10 Hz and droplet sizes 0.05 ml and 0.0167 ml. The resulting output signal is in the form of pulses due to the interruption of the droplet when it passes through the optocoupler. The droplet frequency is calculated based on the period between adjacent droplets, while the droplet size can be measured based on the width of the resulting pulse. For the droplet measurement process, variations of the droplet period and the number of droplets per ml were carried out. The droplet period is regulated by manually adjusting the aperture of the infusion droplet outlet faucet. In contrast, the droplet size is controlled by two types of infusion devices with 20 drops/ml and 60 drops/ml specifications. The experimental results can be used to develop a system response that detects changes in period and droplet size.","PeriodicalId":117601,"journal":{"name":"Spektra: Jurnal Fisika dan Aplikasinya","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INTRAVENOUS INFUSION DOSING SYSTEM FOR VOLUME CONTROL BASED ON SIGNAL PERIODIC MEASUREMENT\",\"authors\":\"L. Umar, V. A. Rosandi, R. N. Setiadi, Zulharman Zulharman\",\"doi\":\"10.21009/spektra.072.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intravenous fluid therapy is a commonly used treatment modality that is used in the treatment of hospitalized patients. Intravenous flow rates are often controlled by counting the number of fluid drops in a drip chamber while adjusting the intravenous line with a watch. In this research, an intravenous infusion dosing system was designed based on periodic signal measurement using a pair of light couplers consisting of a transmitter and a receiver. The transmitter is built using an infrared LED (BPV10NF), while the receiver uses an infrared photodiode detector (BPW34). The infusion droplet will pass a slit between the two coupler components and interrupt the light transmission from the transmitter to the receiver, which will affect the current through the photodiode and change the output status of the circuits. The parameters obtained from this circuit signal are droplet frequency from 1 Hz to 10 Hz and droplet sizes 0.05 ml and 0.0167 ml. The resulting output signal is in the form of pulses due to the interruption of the droplet when it passes through the optocoupler. The droplet frequency is calculated based on the period between adjacent droplets, while the droplet size can be measured based on the width of the resulting pulse. For the droplet measurement process, variations of the droplet period and the number of droplets per ml were carried out. The droplet period is regulated by manually adjusting the aperture of the infusion droplet outlet faucet. In contrast, the droplet size is controlled by two types of infusion devices with 20 drops/ml and 60 drops/ml specifications. The experimental results can be used to develop a system response that detects changes in period and droplet size.\",\"PeriodicalId\":117601,\"journal\":{\"name\":\"Spektra: Jurnal Fisika dan Aplikasinya\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spektra: Jurnal Fisika dan Aplikasinya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21009/spektra.072.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spektra: Jurnal Fisika dan Aplikasinya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21009/spektra.072.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

静脉输液治疗是一种常用的治疗方式,用于治疗住院患者。静脉流速通常是通过计算点滴室中的液体滴数来控制的,同时用手表调节静脉输液管。本研究设计了一种基于周期性信号测量的静脉输液给药系统,该系统采用由发射器和接收器组成的一对光耦合器。发射器使用红外LED (BPV10NF)构建,而接收器使用红外光电二极管探测器(BPW34)。注入液滴将通过两个耦合器组件之间的狭缝,中断从发射器到接收器的光传输,从而影响通过光电二极管的电流,改变电路的输出状态。该电路信号的参数为液滴频率为1hz ~ 10hz,液滴尺寸为0.05 ml和0.0167 ml。由于液滴在通过光耦时中断,因此输出信号以脉冲形式出现。液滴频率是根据相邻液滴之间的周期计算的,而液滴大小可以根据产生的脉冲的宽度来测量。对于液滴测量过程,进行了液滴周期和每ml液滴数的变化。通过手动调节输注液滴出口龙头的孔径来调节液滴周期。相比之下,液滴大小由20滴/ml和60滴/ml两种规格的输液器控制。实验结果可用于开发检测周期和液滴大小变化的系统响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTRAVENOUS INFUSION DOSING SYSTEM FOR VOLUME CONTROL BASED ON SIGNAL PERIODIC MEASUREMENT
Intravenous fluid therapy is a commonly used treatment modality that is used in the treatment of hospitalized patients. Intravenous flow rates are often controlled by counting the number of fluid drops in a drip chamber while adjusting the intravenous line with a watch. In this research, an intravenous infusion dosing system was designed based on periodic signal measurement using a pair of light couplers consisting of a transmitter and a receiver. The transmitter is built using an infrared LED (BPV10NF), while the receiver uses an infrared photodiode detector (BPW34). The infusion droplet will pass a slit between the two coupler components and interrupt the light transmission from the transmitter to the receiver, which will affect the current through the photodiode and change the output status of the circuits. The parameters obtained from this circuit signal are droplet frequency from 1 Hz to 10 Hz and droplet sizes 0.05 ml and 0.0167 ml. The resulting output signal is in the form of pulses due to the interruption of the droplet when it passes through the optocoupler. The droplet frequency is calculated based on the period between adjacent droplets, while the droplet size can be measured based on the width of the resulting pulse. For the droplet measurement process, variations of the droplet period and the number of droplets per ml were carried out. The droplet period is regulated by manually adjusting the aperture of the infusion droplet outlet faucet. In contrast, the droplet size is controlled by two types of infusion devices with 20 drops/ml and 60 drops/ml specifications. The experimental results can be used to develop a system response that detects changes in period and droplet size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信