基于加权平均词嵌入的文本分类器

AbdAllah Elsaadawy, Marwan Torki, Nagwa Ei-Makky
{"title":"基于加权平均词嵌入的文本分类器","authors":"AbdAllah Elsaadawy, Marwan Torki, Nagwa Ei-Makky","doi":"10.1109/JEC-ECC.2018.8679539","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new technique for text representation by generating a sentence vector using a weighted average of words representation where Naive Bayes log count ratio is used as the weight of each word. The quality of this representation is measured in a text classification task using FastText and Word2Vec models. Results show accuracy improvement over unweighted average techniques using the same models. Also, we compare our results to other traditional text representation and classification techniques such as Term Frequency-Inverse Document Frequency (TF-IDF) and Naive Bayes Support Vector Machine (NBSVM).","PeriodicalId":197824,"journal":{"name":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Text Classifier Using Weighted Average Word Embedding\",\"authors\":\"AbdAllah Elsaadawy, Marwan Torki, Nagwa Ei-Makky\",\"doi\":\"10.1109/JEC-ECC.2018.8679539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new technique for text representation by generating a sentence vector using a weighted average of words representation where Naive Bayes log count ratio is used as the weight of each word. The quality of this representation is measured in a text classification task using FastText and Word2Vec models. Results show accuracy improvement over unweighted average techniques using the same models. Also, we compare our results to other traditional text representation and classification techniques such as Term Frequency-Inverse Document Frequency (TF-IDF) and Naive Bayes Support Vector Machine (NBSVM).\",\"PeriodicalId\":197824,\"journal\":{\"name\":\"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEC-ECC.2018.8679539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2018.8679539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了一种新的文本表示技术,通过使用单词表示的加权平均来生成句子向量,其中使用朴素贝叶斯对数计数比率作为每个单词的权重。这种表示的质量是在使用FastText和Word2Vec模型的文本分类任务中度量的。结果表明,与使用相同模型的非加权平均技术相比,精度有所提高。此外,我们还将我们的结果与其他传统的文本表示和分类技术进行了比较,如术语频率-逆文档频率(TF-IDF)和朴素贝叶斯支持向量机(NBSVM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Text Classifier Using Weighted Average Word Embedding
In this paper, we propose a new technique for text representation by generating a sentence vector using a weighted average of words representation where Naive Bayes log count ratio is used as the weight of each word. The quality of this representation is measured in a text classification task using FastText and Word2Vec models. Results show accuracy improvement over unweighted average techniques using the same models. Also, we compare our results to other traditional text representation and classification techniques such as Term Frequency-Inverse Document Frequency (TF-IDF) and Naive Bayes Support Vector Machine (NBSVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信