{"title":"生物计算(主题演讲)","authors":"Sara-Jane Dunn","doi":"10.1145/3179541.3179542","DOIUrl":null,"url":null,"abstract":"Unlike engineered systems, living cells self-generate, self-organise and self-repair, they undertake massively parallel operations with slow and noisy components in a noisy environment, they sense and actuate at molecular scales, and most intriguingly, they blur the line between software and hardware. Understanding this biological computation presents a huge challenge to the scientific community. Yet the ultimate destination and prize at the culmination of this scientific journey is the promise of revolutionary and transformative technology: the rational design and implementation of biological function, or more succinctly, the ability to program life.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological computation (keynote)\",\"authors\":\"Sara-Jane Dunn\",\"doi\":\"10.1145/3179541.3179542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike engineered systems, living cells self-generate, self-organise and self-repair, they undertake massively parallel operations with slow and noisy components in a noisy environment, they sense and actuate at molecular scales, and most intriguingly, they blur the line between software and hardware. Understanding this biological computation presents a huge challenge to the scientific community. Yet the ultimate destination and prize at the culmination of this scientific journey is the promise of revolutionary and transformative technology: the rational design and implementation of biological function, or more succinctly, the ability to program life.\",\"PeriodicalId\":103558,\"journal\":{\"name\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3179541.3179542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3179541.3179542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unlike engineered systems, living cells self-generate, self-organise and self-repair, they undertake massively parallel operations with slow and noisy components in a noisy environment, they sense and actuate at molecular scales, and most intriguingly, they blur the line between software and hardware. Understanding this biological computation presents a huge challenge to the scientific community. Yet the ultimate destination and prize at the culmination of this scientific journey is the promise of revolutionary and transformative technology: the rational design and implementation of biological function, or more succinctly, the ability to program life.