基于各向异性的非零输入均值传感器网络估计方法

A. Yurchenkov, A. Kustov
{"title":"基于各向异性的非零输入均值传感器网络估计方法","authors":"A. Yurchenkov, A. Kustov","doi":"10.1109/MED59994.2023.10185867","DOIUrl":null,"url":null,"abstract":"In this paper, a discrete time-varying model of sensors network is considered. The external input belongs to the class of sequences of random vectors with bounded anisotropy of the extended vector. The anisotropy-based analysis of the system includes the analysis for the multiplicative noise systems and the boundedness criterion of the anisotropic norm. The considering problem concerns the selection of the estimator, which one guarantees the boundedness anisotropic norm. It is demonstrated how to reduce considering problem to convex optimization one","PeriodicalId":270226,"journal":{"name":"2023 31st Mediterranean Conference on Control and Automation (MED)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropy-based Approach of Estimating for Sensors Network with Nonzero Mean of Input\",\"authors\":\"A. Yurchenkov, A. Kustov\",\"doi\":\"10.1109/MED59994.2023.10185867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a discrete time-varying model of sensors network is considered. The external input belongs to the class of sequences of random vectors with bounded anisotropy of the extended vector. The anisotropy-based analysis of the system includes the analysis for the multiplicative noise systems and the boundedness criterion of the anisotropic norm. The considering problem concerns the selection of the estimator, which one guarantees the boundedness anisotropic norm. It is demonstrated how to reduce considering problem to convex optimization one\",\"PeriodicalId\":270226,\"journal\":{\"name\":\"2023 31st Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"258 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 31st Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED59994.2023.10185867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED59994.2023.10185867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了传感器网络的离散时变模型。外部输入属于扩展向量各向异性有界的随机向量序列。基于各向异性的系统分析包括对乘性噪声系统的分析和各向异性范数的有界性判据。考虑的问题是如何选取保证有界各向异性范数的估计量。演示了如何将考虑问题简化为凸优化问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropy-based Approach of Estimating for Sensors Network with Nonzero Mean of Input
In this paper, a discrete time-varying model of sensors network is considered. The external input belongs to the class of sequences of random vectors with bounded anisotropy of the extended vector. The anisotropy-based analysis of the system includes the analysis for the multiplicative noise systems and the boundedness criterion of the anisotropic norm. The considering problem concerns the selection of the estimator, which one guarantees the boundedness anisotropic norm. It is demonstrated how to reduce considering problem to convex optimization one
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信