Callum Aitchison, Basel Halak, Alexander Serb, T. Prodromakis
{"title":"基于忆阻器非线性的PUF","authors":"Callum Aitchison, Basel Halak, Alexander Serb, T. Prodromakis","doi":"10.1109/CSR57506.2023.10224980","DOIUrl":null,"url":null,"abstract":"As autonomous devices are increasingly used in security and safety-critical applications the security of the systems they comprise is of increasing concern. In such situations it is important that devices can be securely identified and trusted. When an IC or device is in the supply chain, or in the field, the lack of control over actors who can obtain physical access can compromise the trust and overall security of a system. Counterfeit chips may be incorporated into the device, compromising reliability or security. Additionally, for implemented devices, keys stored on-device may be copied by a bad actor. To help improve the security of such devices this paper proposes a new physical unclonable function (PUF) architecture, based on a TiOx memristor-based resistive memory (RRAM), that exploits the inherent analogue non-linearity in resistance of some memristor technologies. By directly exploiting non-linearity of memristor cells, rather than relying on the devices' absolute resistance at a single test voltage, a multi-bit-per-comparison PUF is created. As the architecture directly exploits cells' non-linearity, an additional source of hard-to-clone entropy is incorporated.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PUF Based on the Non-Linearity of Memristors\",\"authors\":\"Callum Aitchison, Basel Halak, Alexander Serb, T. Prodromakis\",\"doi\":\"10.1109/CSR57506.2023.10224980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As autonomous devices are increasingly used in security and safety-critical applications the security of the systems they comprise is of increasing concern. In such situations it is important that devices can be securely identified and trusted. When an IC or device is in the supply chain, or in the field, the lack of control over actors who can obtain physical access can compromise the trust and overall security of a system. Counterfeit chips may be incorporated into the device, compromising reliability or security. Additionally, for implemented devices, keys stored on-device may be copied by a bad actor. To help improve the security of such devices this paper proposes a new physical unclonable function (PUF) architecture, based on a TiOx memristor-based resistive memory (RRAM), that exploits the inherent analogue non-linearity in resistance of some memristor technologies. By directly exploiting non-linearity of memristor cells, rather than relying on the devices' absolute resistance at a single test voltage, a multi-bit-per-comparison PUF is created. As the architecture directly exploits cells' non-linearity, an additional source of hard-to-clone entropy is incorporated.\",\"PeriodicalId\":354918,\"journal\":{\"name\":\"2023 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR57506.2023.10224980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As autonomous devices are increasingly used in security and safety-critical applications the security of the systems they comprise is of increasing concern. In such situations it is important that devices can be securely identified and trusted. When an IC or device is in the supply chain, or in the field, the lack of control over actors who can obtain physical access can compromise the trust and overall security of a system. Counterfeit chips may be incorporated into the device, compromising reliability or security. Additionally, for implemented devices, keys stored on-device may be copied by a bad actor. To help improve the security of such devices this paper proposes a new physical unclonable function (PUF) architecture, based on a TiOx memristor-based resistive memory (RRAM), that exploits the inherent analogue non-linearity in resistance of some memristor technologies. By directly exploiting non-linearity of memristor cells, rather than relying on the devices' absolute resistance at a single test voltage, a multi-bit-per-comparison PUF is created. As the architecture directly exploits cells' non-linearity, an additional source of hard-to-clone entropy is incorporated.