基于递归深度神经网络的短期交通流预测:德黑兰研究

M. Abdoos, Taha Vajedsamiei
{"title":"基于递归深度神经网络的短期交通流预测:德黑兰研究","authors":"M. Abdoos, Taha Vajedsamiei","doi":"10.1109/IKT54664.2021.9685122","DOIUrl":null,"url":null,"abstract":"With growing of population, the issue of optimal mobility between two points of the city has become one of the most important problems. There are various tools to suggest the optimal route, but due to the momentary changes in traffic in cities, especially large cities, providing the optimal route without predicting the traffic load will not be accurate. In this regard, it can be noted that one of the most widely used up-to-date methods is the use of deep neural networks to predict the future. In this paper, while examining some of the most widely used deep neural networks to predict traffic sequence, a method is presented based on one of recurrent neural networks. The method has been evaluated on real traffic data on a part of Tehran. The results show that the proposed method outperforms the other similar neural networks.","PeriodicalId":274571,"journal":{"name":"2021 12th International Conference on Information and Knowledge Technology (IKT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Network: a Study in Tehran\",\"authors\":\"M. Abdoos, Taha Vajedsamiei\",\"doi\":\"10.1109/IKT54664.2021.9685122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With growing of population, the issue of optimal mobility between two points of the city has become one of the most important problems. There are various tools to suggest the optimal route, but due to the momentary changes in traffic in cities, especially large cities, providing the optimal route without predicting the traffic load will not be accurate. In this regard, it can be noted that one of the most widely used up-to-date methods is the use of deep neural networks to predict the future. In this paper, while examining some of the most widely used deep neural networks to predict traffic sequence, a method is presented based on one of recurrent neural networks. The method has been evaluated on real traffic data on a part of Tehran. The results show that the proposed method outperforms the other similar neural networks.\",\"PeriodicalId\":274571,\"journal\":{\"name\":\"2021 12th International Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT54664.2021.9685122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT54664.2021.9685122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人口的不断增长,城市两点之间的最佳交通问题已成为人们关注的重要问题之一。有各种各样的工具可以建议最优路线,但由于城市交通的瞬间变化,特别是大城市,在没有预测交通负荷的情况下提供最优路线将是不准确的。在这方面,可以注意到,最广泛使用的最新方法之一是使用深度神经网络来预测未来。本文在分析了目前应用最广泛的深度神经网络预测交通序列的基础上,提出了一种基于递归神经网络的方法。该方法已在德黑兰部分地区的实际交通数据中进行了评估。结果表明,该方法优于其他同类神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Network: a Study in Tehran
With growing of population, the issue of optimal mobility between two points of the city has become one of the most important problems. There are various tools to suggest the optimal route, but due to the momentary changes in traffic in cities, especially large cities, providing the optimal route without predicting the traffic load will not be accurate. In this regard, it can be noted that one of the most widely used up-to-date methods is the use of deep neural networks to predict the future. In this paper, while examining some of the most widely used deep neural networks to predict traffic sequence, a method is presented based on one of recurrent neural networks. The method has been evaluated on real traffic data on a part of Tehran. The results show that the proposed method outperforms the other similar neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信