硬第二类超导体椭球体在Bean模型中的磁性数学建模

N. D. Kuzmichev, A. A. Shushpanov, M. A. Vasyutin
{"title":"硬第二类超导体椭球体在Bean模型中的磁性数学建模","authors":"N. D. Kuzmichev, A. A. Shushpanov, M. A. Vasyutin","doi":"10.15507/2079-6900.21.201903.353-362","DOIUrl":null,"url":null,"abstract":"Authors have modelled magnetic field in hard II-type superconductor bodies with cylindric symmetry by means of Bean model. Using the equations of electrodynamics and the Poisson equation for the vector potential, the Fredholm equation of the first kind is derived for the screening supercurrent density. By introducing the explicit form of the current-voltage characteristic and the law of electromagnetic induction, the equation for the supercurrent density is reduced to an integral equation of the 2nd kind, which is solved numerically in matrix form on a non-uniform grid with compaction to the edges of the sample. Density distribution of the screened superconductive current, sample-self magnetic field and hysteresis loops of magnetization in the cases of cylinders and spheroids are obtained.","PeriodicalId":273445,"journal":{"name":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of the magnetic properties of spheroids of hard second kind superconductors in the Bean model\",\"authors\":\"N. D. Kuzmichev, A. A. Shushpanov, M. A. Vasyutin\",\"doi\":\"10.15507/2079-6900.21.201903.353-362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authors have modelled magnetic field in hard II-type superconductor bodies with cylindric symmetry by means of Bean model. Using the equations of electrodynamics and the Poisson equation for the vector potential, the Fredholm equation of the first kind is derived for the screening supercurrent density. By introducing the explicit form of the current-voltage characteristic and the law of electromagnetic induction, the equation for the supercurrent density is reduced to an integral equation of the 2nd kind, which is solved numerically in matrix form on a non-uniform grid with compaction to the edges of the sample. Density distribution of the screened superconductive current, sample-self magnetic field and hysteresis loops of magnetization in the cases of cylinders and spheroids are obtained.\",\"PeriodicalId\":273445,\"journal\":{\"name\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/2079-6900.21.201903.353-362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/2079-6900.21.201903.353-362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用Bean模型模拟了具有圆柱对称的硬ii型超导体体中的磁场。利用电动力学方程和矢量势的泊松方程,导出了第一类筛选超电流密度的Fredholm方程。通过引入电流-电压特性的显式形式和电磁感应定律,将电流密度方程简化为第二类积分方程,并在非均匀网格上以矩阵形式进行数值求解。得到了屏蔽后的超导电流密度分布、样品自磁场以及圆柱体和椭球体的磁化磁滞回线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of the magnetic properties of spheroids of hard second kind superconductors in the Bean model
Authors have modelled magnetic field in hard II-type superconductor bodies with cylindric symmetry by means of Bean model. Using the equations of electrodynamics and the Poisson equation for the vector potential, the Fredholm equation of the first kind is derived for the screening supercurrent density. By introducing the explicit form of the current-voltage characteristic and the law of electromagnetic induction, the equation for the supercurrent density is reduced to an integral equation of the 2nd kind, which is solved numerically in matrix form on a non-uniform grid with compaction to the edges of the sample. Density distribution of the screened superconductive current, sample-self magnetic field and hysteresis loops of magnetization in the cases of cylinders and spheroids are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信