结构化文档中的纯文本处理

N. Verwer
{"title":"结构化文档中的纯文本处理","authors":"N. Verwer","doi":"10.1075/DA.2020.VERWER.PLAIN-TEXT-PROCESSING","DOIUrl":null,"url":null,"abstract":"\n Applications that analyze and process natural language can be used for things like named entity recognition, anonymization, topic\n extraction, sentiment analysis. In most cases, these applications use the plain text of a document, and may add or change markup. This\n causes problems when the original document already contains markup that must be preserved. The text to be analyzed may run across markup\n boundaries, and newly generated markup may lead to unbalanced (non well-formed) structures. This presentation shows how the Separated Markup\n API for XML (SMAX) can be used to apply natural language processing to XML documents. It preserves the existing document structure and\n allows for balanced insertion of new markup. A demonstration will be given of the use of SMAX for extracting and marking references in legal\n documents. This Link eXtractor was built for the Dutch center for governmental publications. SMAX and Simple Pipelines of Event API\n Transformers (SPEAT) will be available as open source software at the time of Declarative Amsterdam.","PeriodicalId":364637,"journal":{"name":"Proceedings of Declarative Amsterdam 2020","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plain text processingin structured documents\",\"authors\":\"N. Verwer\",\"doi\":\"10.1075/DA.2020.VERWER.PLAIN-TEXT-PROCESSING\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Applications that analyze and process natural language can be used for things like named entity recognition, anonymization, topic\\n extraction, sentiment analysis. In most cases, these applications use the plain text of a document, and may add or change markup. This\\n causes problems when the original document already contains markup that must be preserved. The text to be analyzed may run across markup\\n boundaries, and newly generated markup may lead to unbalanced (non well-formed) structures. This presentation shows how the Separated Markup\\n API for XML (SMAX) can be used to apply natural language processing to XML documents. It preserves the existing document structure and\\n allows for balanced insertion of new markup. A demonstration will be given of the use of SMAX for extracting and marking references in legal\\n documents. This Link eXtractor was built for the Dutch center for governmental publications. SMAX and Simple Pipelines of Event API\\n Transformers (SPEAT) will be available as open source software at the time of Declarative Amsterdam.\",\"PeriodicalId\":364637,\"journal\":{\"name\":\"Proceedings of Declarative Amsterdam 2020\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Declarative Amsterdam 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1075/DA.2020.VERWER.PLAIN-TEXT-PROCESSING\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Declarative Amsterdam 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/DA.2020.VERWER.PLAIN-TEXT-PROCESSING","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析和处理自然语言的应用程序可以用于命名实体识别、匿名化、主题提取、情感分析等。在大多数情况下,这些应用程序使用文档的纯文本,并可能添加或更改标记。当原始文档已经包含必须保留的标记时,这会导致问题。要分析的文本可能跨越标记边界,并且新生成的标记可能导致不平衡(非格式良好)的结构。本演示演示了如何使用XML的分隔标记API (SMAX)将自然语言处理应用于XML文档。它保留了现有的文档结构,并允许均衡地插入新的标记。将示范如何使用SMAX提取和标记法律文件中的参考文献。这个链接提取器是为荷兰政府出版物中心建立的。SMAX和事件API转换器的简单管道(SPEAT)将在Declarative Amsterdam发布时作为开源软件提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plain text processingin structured documents
Applications that analyze and process natural language can be used for things like named entity recognition, anonymization, topic extraction, sentiment analysis. In most cases, these applications use the plain text of a document, and may add or change markup. This causes problems when the original document already contains markup that must be preserved. The text to be analyzed may run across markup boundaries, and newly generated markup may lead to unbalanced (non well-formed) structures. This presentation shows how the Separated Markup API for XML (SMAX) can be used to apply natural language processing to XML documents. It preserves the existing document structure and allows for balanced insertion of new markup. A demonstration will be given of the use of SMAX for extracting and marking references in legal documents. This Link eXtractor was built for the Dutch center for governmental publications. SMAX and Simple Pipelines of Event API Transformers (SPEAT) will be available as open source software at the time of Declarative Amsterdam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信