图和群上的强大数定律

N. Mosina, A. Ushakov
{"title":"图和群上的强大数定律","authors":"N. Mosina, A. Ushakov","doi":"10.1515/gcc.2011.004","DOIUrl":null,"url":null,"abstract":"Abstract We consider (graph-)group-valued random element ξ, discuss the properties of a mean-set 𝔼(ξ), and prove the generalization of the strong law of large numbers for graphs and groups. Furthermore, we prove an analogue of the classical Chebyshev's inequality for ξ and Chernoff-like asymptotic bounds. In addition, we prove several results about configurations of mean-sets in graphs and discuss computational problems together with methods of computing mean-sets in practice and propose an algorithm for such computation.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strong law of large numbers on graphs and groups\",\"authors\":\"N. Mosina, A. Ushakov\",\"doi\":\"10.1515/gcc.2011.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider (graph-)group-valued random element ξ, discuss the properties of a mean-set 𝔼(ξ), and prove the generalization of the strong law of large numbers for graphs and groups. Furthermore, we prove an analogue of the classical Chebyshev's inequality for ξ and Chernoff-like asymptotic bounds. In addition, we prove several results about configurations of mean-sets in graphs and discuss computational problems together with methods of computing mean-sets in practice and propose an algorithm for such computation.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc.2011.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc.2011.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要考虑(图-)群值随机元素ξ,讨论了均值集(ξ)的性质,证明了图和群的强大数定律的推广。进一步,我们证明了经典切比雪夫不等式对于ξ和类切诺夫渐近界的一个类似。此外,我们证明了图中均值集组态的几个结果,并讨论了实际中均值集的计算问题和计算方法,并提出了计算均值集的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong law of large numbers on graphs and groups
Abstract We consider (graph-)group-valued random element ξ, discuss the properties of a mean-set 𝔼(ξ), and prove the generalization of the strong law of large numbers for graphs and groups. Furthermore, we prove an analogue of the classical Chebyshev's inequality for ξ and Chernoff-like asymptotic bounds. In addition, we prove several results about configurations of mean-sets in graphs and discuss computational problems together with methods of computing mean-sets in practice and propose an algorithm for such computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信