线性擦除块码在有理数Q或代数结构的领域Ψq

Yehor Savchenko
{"title":"线性擦除块码在有理数Q或代数结构的领域Ψq","authors":"Yehor Savchenko","doi":"10.1109/ICCT.2018.8600217","DOIUrl":null,"url":null,"abstract":"In this paper, we define a mathematical model of linear erasure block codes (k, C) for symbol erasure channels (SEC) that are built over either a field of rational numbers $Q$ or an algebraic structure $\\pmb{\\Psi q}$. We show the necessary condition for the codes (k, C) to be optimal, and we demonstrate that some of the already existing erasure codes may be considered as the specific cases of the codes (k, C) over a $\\pmb{\\Psi_{q}}$, such as Luby Transform, Raptor or Zigzag Decodable.","PeriodicalId":244952,"journal":{"name":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Erasure Block Codes over Either a Field of Rational Numbers Q or an Algebraic Structure Ψq\",\"authors\":\"Yehor Savchenko\",\"doi\":\"10.1109/ICCT.2018.8600217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a mathematical model of linear erasure block codes (k, C) for symbol erasure channels (SEC) that are built over either a field of rational numbers $Q$ or an algebraic structure $\\\\pmb{\\\\Psi q}$. We show the necessary condition for the codes (k, C) to be optimal, and we demonstrate that some of the already existing erasure codes may be considered as the specific cases of the codes (k, C) over a $\\\\pmb{\\\\Psi_{q}}$, such as Luby Transform, Raptor or Zigzag Decodable.\",\"PeriodicalId\":244952,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2018.8600217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2018.8600217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们定义了建立在有理数$Q$或代数结构$\pmb{\Psi Q}$上的符号擦除信道(SEC)的线性擦除分组码(k, C)的数学模型。我们证明了码(k, C)是最优的必要条件,并且我们证明了一些已经存在的擦除码可以被认为是码(k, C)在a $\pmb{\Psi_{q}}$上的特定情况,例如Luby Transform, Raptor或Zigzag decodec。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Erasure Block Codes over Either a Field of Rational Numbers Q or an Algebraic Structure Ψq
In this paper, we define a mathematical model of linear erasure block codes (k, C) for symbol erasure channels (SEC) that are built over either a field of rational numbers $Q$ or an algebraic structure $\pmb{\Psi q}$. We show the necessary condition for the codes (k, C) to be optimal, and we demonstrate that some of the already existing erasure codes may be considered as the specific cases of the codes (k, C) over a $\pmb{\Psi_{q}}$, such as Luby Transform, Raptor or Zigzag Decodable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信