T. Nakajima, Takuro Kitayama, H. Arakawa, H. Tokuda
{"title":"实时Mach中优先级反演的集成管理","authors":"T. Nakajima, Takuro Kitayama, H. Arakawa, H. Tokuda","doi":"10.1109/REAL.1993.393508","DOIUrl":null,"url":null,"abstract":"Synchronization and communication are two common sources of priority inversion which may make the behavior of systems unpredictable and unanalyzable. In microkernel-based systems, they are heavily used for building operating system servers and decomposing applications into several tasks. The management of priorities in IPC and synchronization should be integrated using a uniform mechanism since priority inversion occurs if such integration is not supported. Also, a highly preemptable server structure should be provided because the execution in a server may take up too much time. We propose an integrated real-time resource management model, and a real-time server model which solve the above problems. We implemented and evaluated the models in Real-Time Mach using a uniform mechanism. Our approach enables us to build operating system servers and to decompose applications into several tasks without incurring priority inversion.<<ETX>>","PeriodicalId":198313,"journal":{"name":"1993 Proceedings Real-Time Systems Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Integrated management of priority inversion in Real-Time Mach\",\"authors\":\"T. Nakajima, Takuro Kitayama, H. Arakawa, H. Tokuda\",\"doi\":\"10.1109/REAL.1993.393508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronization and communication are two common sources of priority inversion which may make the behavior of systems unpredictable and unanalyzable. In microkernel-based systems, they are heavily used for building operating system servers and decomposing applications into several tasks. The management of priorities in IPC and synchronization should be integrated using a uniform mechanism since priority inversion occurs if such integration is not supported. Also, a highly preemptable server structure should be provided because the execution in a server may take up too much time. We propose an integrated real-time resource management model, and a real-time server model which solve the above problems. We implemented and evaluated the models in Real-Time Mach using a uniform mechanism. Our approach enables us to build operating system servers and to decompose applications into several tasks without incurring priority inversion.<<ETX>>\",\"PeriodicalId\":198313,\"journal\":{\"name\":\"1993 Proceedings Real-Time Systems Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 Proceedings Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REAL.1993.393508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 Proceedings Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REAL.1993.393508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated management of priority inversion in Real-Time Mach
Synchronization and communication are two common sources of priority inversion which may make the behavior of systems unpredictable and unanalyzable. In microkernel-based systems, they are heavily used for building operating system servers and decomposing applications into several tasks. The management of priorities in IPC and synchronization should be integrated using a uniform mechanism since priority inversion occurs if such integration is not supported. Also, a highly preemptable server structure should be provided because the execution in a server may take up too much time. We propose an integrated real-time resource management model, and a real-time server model which solve the above problems. We implemented and evaluated the models in Real-Time Mach using a uniform mechanism. Our approach enables us to build operating system servers and to decompose applications into several tasks without incurring priority inversion.<>