网络攻击阶段的因果发现

W. G. Mueller, Alex Memory, Kyle Bartrem
{"title":"网络攻击阶段的因果发现","authors":"W. G. Mueller, Alex Memory, Kyle Bartrem","doi":"10.1109/ICMLA.2019.00219","DOIUrl":null,"url":null,"abstract":"Causal discovery algorithms are increasingly being used to discover valid, novel, and significant causal relationships from large amounts of observational data. Cyberattacks are hypothesized to evolve according to the Cyber Kill Chain® which consists of a causal model describing the phases of a cyberattack. This paper introduces causal discovery to cybersecurity research and provides evidence of the kill chain with an extensive empirical assessment of two databases of real cyberattacks.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Causal Discovery of Cyber Attack Phases\",\"authors\":\"W. G. Mueller, Alex Memory, Kyle Bartrem\",\"doi\":\"10.1109/ICMLA.2019.00219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal discovery algorithms are increasingly being used to discover valid, novel, and significant causal relationships from large amounts of observational data. Cyberattacks are hypothesized to evolve according to the Cyber Kill Chain® which consists of a causal model describing the phases of a cyberattack. This paper introduces causal discovery to cybersecurity research and provides evidence of the kill chain with an extensive empirical assessment of two databases of real cyberattacks.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

因果发现算法越来越多地被用于从大量观测数据中发现有效的、新颖的和重要的因果关系。网络攻击被假设为根据网络杀伤链®进化,该链由描述网络攻击阶段的因果模型组成。本文将因果发现引入网络安全研究,并通过对两个真实网络攻击数据库的广泛实证评估提供了杀伤链的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Discovery of Cyber Attack Phases
Causal discovery algorithms are increasingly being used to discover valid, novel, and significant causal relationships from large amounts of observational data. Cyberattacks are hypothesized to evolve according to the Cyber Kill Chain® which consists of a causal model describing the phases of a cyberattack. This paper introduces causal discovery to cybersecurity research and provides evidence of the kill chain with an extensive empirical assessment of two databases of real cyberattacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信