在线结构理论基础II:算子方法

R. Downey, A. Melnikov, K. Ng
{"title":"在线结构理论基础II:算子方法","authors":"R. Downey, A. Melnikov, K. Ng","doi":"10.46298/lmcs-17(3:6)2021","DOIUrl":null,"url":null,"abstract":"We introduce a framework for online structure theory. Our approach\ngeneralises notions arising independently in several areas of computability\ntheory and complexity theory. We suggest a unifying approach using operators\nwhere we allow the input to be a countable object of an arbitrary complexity.\nWe give a new framework which (i) ties online algorithms with computable\nanalysis, (ii) shows how to use modifications of notions from computable\nanalysis, such as Weihrauch reducibility, to analyse finite but uniform\ncombinatorics, (iii) show how to finitize reverse mathematics to suggest a fine\nstructure of finite analogs of infinite combinatorial problems, and (iv) see\nhow similar ideas can be amalgamated from areas such as EX-learning, computable\nanalysis, distributed computing and the like. One of the key ideas is that\nonline algorithms can be viewed as a sub-area of computable analysis.\nConversely, we also get an enrichment of computable analysis from classical\nonline algorithms.\n","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Foundations of Online Structure Theory II: The Operator Approach\",\"authors\":\"R. Downey, A. Melnikov, K. Ng\",\"doi\":\"10.46298/lmcs-17(3:6)2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a framework for online structure theory. Our approach\\ngeneralises notions arising independently in several areas of computability\\ntheory and complexity theory. We suggest a unifying approach using operators\\nwhere we allow the input to be a countable object of an arbitrary complexity.\\nWe give a new framework which (i) ties online algorithms with computable\\nanalysis, (ii) shows how to use modifications of notions from computable\\nanalysis, such as Weihrauch reducibility, to analyse finite but uniform\\ncombinatorics, (iii) show how to finitize reverse mathematics to suggest a fine\\nstructure of finite analogs of infinite combinatorial problems, and (iv) see\\nhow similar ideas can be amalgamated from areas such as EX-learning, computable\\nanalysis, distributed computing and the like. One of the key ideas is that\\nonline algorithms can be viewed as a sub-area of computable analysis.\\nConversely, we also get an enrichment of computable analysis from classical\\nonline algorithms.\\n\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-17(3:6)2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-17(3:6)2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们介绍了在线结构理论的一个框架。我们的方法概括了在可计算性理论和复杂性理论的几个领域中独立产生的概念。我们建议使用操作符的统一方法,其中我们允许输入是任意复杂度的可数对象。我们给出了一个新的框架,它(i)将在线算法与可计算分析联系起来,(ii)展示了如何使用可计算分析中概念的修改,如Weihrauch可约性,来分析有限但均匀的组合问题,(iii)展示了如何将逆向数学有限化,以提出无限组合问题的有限类似物的精细结构,以及(iv)看到如何将类似的思想从诸如ex学习,可计算分析,分布式计算等领域合并。其中一个关键思想是在线算法可以被视为可计算分析的一个子领域。相反,我们也从经典的在线算法中得到了可计算分析的丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foundations of Online Structure Theory II: The Operator Approach
We introduce a framework for online structure theory. Our approach generalises notions arising independently in several areas of computability theory and complexity theory. We suggest a unifying approach using operators where we allow the input to be a countable object of an arbitrary complexity. We give a new framework which (i) ties online algorithms with computable analysis, (ii) shows how to use modifications of notions from computable analysis, such as Weihrauch reducibility, to analyse finite but uniform combinatorics, (iii) show how to finitize reverse mathematics to suggest a fine structure of finite analogs of infinite combinatorial problems, and (iv) see how similar ideas can be amalgamated from areas such as EX-learning, computable analysis, distributed computing and the like. One of the key ideas is that online algorithms can be viewed as a sub-area of computable analysis. Conversely, we also get an enrichment of computable analysis from classical online algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信