带软时间窗车辆路径问题的改进双种群遗传算法

Weimin Ma, Yonghuang Hu, Yang Zhou
{"title":"带软时间窗车辆路径问题的改进双种群遗传算法","authors":"Weimin Ma, Yonghuang Hu, Yang Zhou","doi":"10.1109/ICSESS.2010.5552380","DOIUrl":null,"url":null,"abstract":"This study primarily focuses on solving the vehicle routing problem with soft time windows (VRPSTW) by applying an improved double-population genetic algorithm (DPGA). The traditional single-population genetic algorithm (SPGA) in solving vehicle routing problem usually traps in local optimum or consumes considerable time. In this paper two different initialization methods — random initialization method and construction initialization method are introduced to frame the improved double-population genetic algorithm. The computation experiment is provided to compare the improved double-population genetic algorithm with the SPGA, and the final outcome effectively proves the superiority of the novel algorithm.","PeriodicalId":264630,"journal":{"name":"2010 IEEE International Conference on Software Engineering and Service Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improved double-population genetic algorithm for vehicle routing problem with soft time windows\",\"authors\":\"Weimin Ma, Yonghuang Hu, Yang Zhou\",\"doi\":\"10.1109/ICSESS.2010.5552380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study primarily focuses on solving the vehicle routing problem with soft time windows (VRPSTW) by applying an improved double-population genetic algorithm (DPGA). The traditional single-population genetic algorithm (SPGA) in solving vehicle routing problem usually traps in local optimum or consumes considerable time. In this paper two different initialization methods — random initialization method and construction initialization method are introduced to frame the improved double-population genetic algorithm. The computation experiment is provided to compare the improved double-population genetic algorithm with the SPGA, and the final outcome effectively proves the superiority of the novel algorithm.\",\"PeriodicalId\":264630,\"journal\":{\"name\":\"2010 IEEE International Conference on Software Engineering and Service Sciences\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Software Engineering and Service Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2010.5552380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Engineering and Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2010.5552380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究了一种改进的双种群遗传算法(DPGA),用于求解带有软时间窗(VRPSTW)的车辆路径问题。传统的单种群遗传算法(SPGA)在求解车辆路径问题时往往陷入局部最优或耗时较长。本文引入两种不同的初始化方法——随机初始化法和构造初始化法来构造改进的双种群遗传算法。通过计算实验将改进的双种群遗传算法与SPGA算法进行了比较,结果有效地证明了新算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved double-population genetic algorithm for vehicle routing problem with soft time windows
This study primarily focuses on solving the vehicle routing problem with soft time windows (VRPSTW) by applying an improved double-population genetic algorithm (DPGA). The traditional single-population genetic algorithm (SPGA) in solving vehicle routing problem usually traps in local optimum or consumes considerable time. In this paper two different initialization methods — random initialization method and construction initialization method are introduced to frame the improved double-population genetic algorithm. The computation experiment is provided to compare the improved double-population genetic algorithm with the SPGA, and the final outcome effectively proves the superiority of the novel algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信