基于区域结构相似性和contourlet变换的图像融合

Jiamin Gong, Beibei Wang, Yingna Deng, Lin Qiao, Huabo Liu, Jiachi Xu, Zhengjun Zhang
{"title":"基于区域结构相似性和contourlet变换的图像融合","authors":"Jiamin Gong, Beibei Wang, Yingna Deng, Lin Qiao, Huabo Liu, Jiachi Xu, Zhengjun Zhang","doi":"10.1109/SIPROCESS.2016.7888263","DOIUrl":null,"url":null,"abstract":"In order to improve the quality of fusion image integrated by infrared and visible images, so that it is more suitable for human and computer vision or processing. A two-step fusion method, that is region structure similarity and Contourlet transform, is presented. With the blocking idea, source images are fused by using region structure similarity, region energy ratio and region clarity ratio to obtain the first fusion image. Then the first fusion image and two source images are decomposed by taking Contourlet transform, and low frequency components use region variance weighting rule, high frequency components adopt multi-scale analysis. Experimental results prove that our proposed method can improve subjective visual effect of the image. Meanwhile objective evaluation indexes entropy, standard deviation, average gradient and mutual information are increased.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image fusion based on region structure similarity and contourlet transform\",\"authors\":\"Jiamin Gong, Beibei Wang, Yingna Deng, Lin Qiao, Huabo Liu, Jiachi Xu, Zhengjun Zhang\",\"doi\":\"10.1109/SIPROCESS.2016.7888263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the quality of fusion image integrated by infrared and visible images, so that it is more suitable for human and computer vision or processing. A two-step fusion method, that is region structure similarity and Contourlet transform, is presented. With the blocking idea, source images are fused by using region structure similarity, region energy ratio and region clarity ratio to obtain the first fusion image. Then the first fusion image and two source images are decomposed by taking Contourlet transform, and low frequency components use region variance weighting rule, high frequency components adopt multi-scale analysis. Experimental results prove that our proposed method can improve subjective visual effect of the image. Meanwhile objective evaluation indexes entropy, standard deviation, average gradient and mutual information are increased.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高红外图像与可见光图像融合后的图像质量,使其更适合于人类和计算机视觉或处理。提出了一种基于区域结构相似性和Contourlet变换的两步融合方法。采用分块思想,利用区域结构相似度、区域能量比和区域清晰度比对源图像进行融合,得到第一张融合图像。然后对第一幅融合图像和两幅源图像进行Contourlet变换分解,低频分量采用区域方差加权规则,高频分量采用多尺度分析。实验结果证明,该方法可以提高图像的主观视觉效果。同时,客观评价指标熵、标准差、平均梯度和互信息增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image fusion based on region structure similarity and contourlet transform
In order to improve the quality of fusion image integrated by infrared and visible images, so that it is more suitable for human and computer vision or processing. A two-step fusion method, that is region structure similarity and Contourlet transform, is presented. With the blocking idea, source images are fused by using region structure similarity, region energy ratio and region clarity ratio to obtain the first fusion image. Then the first fusion image and two source images are decomposed by taking Contourlet transform, and low frequency components use region variance weighting rule, high frequency components adopt multi-scale analysis. Experimental results prove that our proposed method can improve subjective visual effect of the image. Meanwhile objective evaluation indexes entropy, standard deviation, average gradient and mutual information are increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信