混合可再生能源与混合储能系统研究

{"title":"混合可再生能源与混合储能系统研究","authors":"","doi":"10.31829/2689-6958/jes2019-2(1)-104","DOIUrl":null,"url":null,"abstract":"There are many renewable energy sources in nature today. The most commonly used of these are solar, wave, wind and flow energy. The weakest aspect of these renewable energy sources in nature is that the amount of energy produced depends on the nature conditions. The power generation capacities of these energy sources depending on the weather conditions in order to more stable them are necessary to combine. By combining more than one renewable energy source, a hybrid power generation system is created. Hybrid energy storage units are added to this hybrid power generation system to ensure persistence of energy. In this study, sea flow energy and offshore wind energy are combined and a hybrid power generation system has been created. In addition, a hybrid energy storage unit consisting of a battery and ultracapacitor has been created in order to ensure the persistence of the energy produced. All two hybrid units were simulated using MATLAB/Simulink program. By integrating these systems with each other, their dynamic behaviors were investigated under possible working conditions. The results of the simulation show that the hybrid energy storage unit supports the wind and sea flow energy.","PeriodicalId":177067,"journal":{"name":"Journal of Electronics and Sensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Hybrid Renewable Energy Source and Hybrid Energy Storage System\",\"authors\":\"\",\"doi\":\"10.31829/2689-6958/jes2019-2(1)-104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many renewable energy sources in nature today. The most commonly used of these are solar, wave, wind and flow energy. The weakest aspect of these renewable energy sources in nature is that the amount of energy produced depends on the nature conditions. The power generation capacities of these energy sources depending on the weather conditions in order to more stable them are necessary to combine. By combining more than one renewable energy source, a hybrid power generation system is created. Hybrid energy storage units are added to this hybrid power generation system to ensure persistence of energy. In this study, sea flow energy and offshore wind energy are combined and a hybrid power generation system has been created. In addition, a hybrid energy storage unit consisting of a battery and ultracapacitor has been created in order to ensure the persistence of the energy produced. All two hybrid units were simulated using MATLAB/Simulink program. By integrating these systems with each other, their dynamic behaviors were investigated under possible working conditions. The results of the simulation show that the hybrid energy storage unit supports the wind and sea flow energy.\",\"PeriodicalId\":177067,\"journal\":{\"name\":\"Journal of Electronics and Sensors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics and Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31829/2689-6958/jes2019-2(1)-104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics and Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31829/2689-6958/jes2019-2(1)-104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

今天在自然界中有许多可再生能源。其中最常用的是太阳能、波浪、风能和流能。这些可再生能源在自然界中最薄弱的方面是,产生的能量取决于自然条件。这些能源的发电能力取决于天气条件,为了使它们更加稳定,有必要进行组合。将一种以上的可再生能源结合起来,就形成了一个混合发电系统。混合能源存储单元被添加到这个混合发电系统,以确保能源的持久性。本研究将海流能与海上风能相结合,创建了一个混合发电系统。此外,为了确保产生的能量的持久性,还创建了由电池和超级电容器组成的混合储能单元。采用MATLAB/Simulink程序对两种混合动力装置进行了仿真。通过将这些系统相互集成,研究了它们在可能工作条件下的动态行为。仿真结果表明,该混合储能单元支持风流和海流能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Hybrid Renewable Energy Source and Hybrid Energy Storage System
There are many renewable energy sources in nature today. The most commonly used of these are solar, wave, wind and flow energy. The weakest aspect of these renewable energy sources in nature is that the amount of energy produced depends on the nature conditions. The power generation capacities of these energy sources depending on the weather conditions in order to more stable them are necessary to combine. By combining more than one renewable energy source, a hybrid power generation system is created. Hybrid energy storage units are added to this hybrid power generation system to ensure persistence of energy. In this study, sea flow energy and offshore wind energy are combined and a hybrid power generation system has been created. In addition, a hybrid energy storage unit consisting of a battery and ultracapacitor has been created in order to ensure the persistence of the energy produced. All two hybrid units were simulated using MATLAB/Simulink program. By integrating these systems with each other, their dynamic behaviors were investigated under possible working conditions. The results of the simulation show that the hybrid energy storage unit supports the wind and sea flow energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信