随机和选择性节点移除下电网节点度分布及其拓扑鲁棒性

Zhifang Wang, A. Scaglione, R. Thomas
{"title":"随机和选择性节点移除下电网节点度分布及其拓扑鲁棒性","authors":"Zhifang Wang, A. Scaglione, R. Thomas","doi":"10.1109/ICCW.2010.5503926","DOIUrl":null,"url":null,"abstract":"In this paper we numerically study the topology robustness of power grids under random and selective node breakdowns, and analytically estimate the critical node-removal thresholds to disintegrate a system, based on the available US power grid data. We also present an analysis on the node degree distribution in power grids because it closely relates with the topology robustness. It is found that the node degree in a power grid can be well fitted by a mixture distribution coming from the sum of a truncated Geometric random variable and an irregular Discrete random variable. With the findings we obtain better estimates of the threshold under selective node breakdowns which predict the numerical thresholds more correctly.","PeriodicalId":422951,"journal":{"name":"2010 IEEE International Conference on Communications Workshops","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"The Node Degree Distribution in Power Grid and Its Topology Robustness under Random and Selective Node Removals\",\"authors\":\"Zhifang Wang, A. Scaglione, R. Thomas\",\"doi\":\"10.1109/ICCW.2010.5503926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we numerically study the topology robustness of power grids under random and selective node breakdowns, and analytically estimate the critical node-removal thresholds to disintegrate a system, based on the available US power grid data. We also present an analysis on the node degree distribution in power grids because it closely relates with the topology robustness. It is found that the node degree in a power grid can be well fitted by a mixture distribution coming from the sum of a truncated Geometric random variable and an irregular Discrete random variable. With the findings we obtain better estimates of the threshold under selective node breakdowns which predict the numerical thresholds more correctly.\",\"PeriodicalId\":422951,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications Workshops\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2010.5503926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2010.5503926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

在本文中,我们数值研究了随机和选择性节点故障下电网的拓扑鲁棒性,并基于现有的美国电网数据,分析估计了系统分解的关键节点去除阈值。由于节点度分布与拓扑鲁棒性密切相关,我们还对电网中的节点度分布进行了分析。研究发现,截形几何随机变量与不规则离散随机变量之和的混合分布可以很好地拟合电网中的节点度。利用这些发现,我们获得了选择性节点故障下阈值的更好估计,从而更准确地预测了数值阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Node Degree Distribution in Power Grid and Its Topology Robustness under Random and Selective Node Removals
In this paper we numerically study the topology robustness of power grids under random and selective node breakdowns, and analytically estimate the critical node-removal thresholds to disintegrate a system, based on the available US power grid data. We also present an analysis on the node degree distribution in power grids because it closely relates with the topology robustness. It is found that the node degree in a power grid can be well fitted by a mixture distribution coming from the sum of a truncated Geometric random variable and an irregular Discrete random variable. With the findings we obtain better estimates of the threshold under selective node breakdowns which predict the numerical thresholds more correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信