WMC-ViT:使用改进的视觉变压器进行废物多类分类

Aidan G. Kurz, Ethan R. Adams, Arthur C. Depoian, Colleen P. Bailey, P. Guturu
{"title":"WMC-ViT:使用改进的视觉变压器进行废物多类分类","authors":"Aidan G. Kurz, Ethan R. Adams, Arthur C. Depoian, Colleen P. Bailey, P. Guturu","doi":"10.1109/MetroCon56047.2022.9971136","DOIUrl":null,"url":null,"abstract":"The constant production and lack of efficient waste management procedure has created a need for automated classification of trash as it comes into facilities. This paper proposes a new algorithm for efficiently classifying objects found in solid waste processing by utilizing a combination of vision transformers (ViT) and convolutional neural networks (CNNs) to create a Multi-Head block for parallel processing of multiple transformers. This method identifies five unique classes of the most common material found in waste with peak test accuracy of 94.27% using 35492 total parameters, a reduction of 99.74% when compared to current state of the art methods, allowing for lower power operations and easier deployment.","PeriodicalId":292881,"journal":{"name":"2022 IEEE MetroCon","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WMC-ViT: Waste Multi-class Classification Using a Modified Vision Transformer\",\"authors\":\"Aidan G. Kurz, Ethan R. Adams, Arthur C. Depoian, Colleen P. Bailey, P. Guturu\",\"doi\":\"10.1109/MetroCon56047.2022.9971136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constant production and lack of efficient waste management procedure has created a need for automated classification of trash as it comes into facilities. This paper proposes a new algorithm for efficiently classifying objects found in solid waste processing by utilizing a combination of vision transformers (ViT) and convolutional neural networks (CNNs) to create a Multi-Head block for parallel processing of multiple transformers. This method identifies five unique classes of the most common material found in waste with peak test accuracy of 94.27% using 35492 total parameters, a reduction of 99.74% when compared to current state of the art methods, allowing for lower power operations and easier deployment.\",\"PeriodicalId\":292881,\"journal\":{\"name\":\"2022 IEEE MetroCon\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MetroCon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroCon56047.2022.9971136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MetroCon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroCon56047.2022.9971136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于不断生产和缺乏有效的废物管理程序,需要对进入设施的垃圾进行自动分类。本文提出了一种基于视觉变压器(ViT)和卷积神经网络(cnn)相结合的固体废物处理对象分类新算法,该算法创建了一个多头块,用于多个变压器的并行处理。该方法识别了废物中最常见的五种独特类型的材料,使用35492个总参数,峰值测试精度为94.27%,与目前最先进的方法相比,降低了99.74%,允许更低的功率操作,更容易部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WMC-ViT: Waste Multi-class Classification Using a Modified Vision Transformer
The constant production and lack of efficient waste management procedure has created a need for automated classification of trash as it comes into facilities. This paper proposes a new algorithm for efficiently classifying objects found in solid waste processing by utilizing a combination of vision transformers (ViT) and convolutional neural networks (CNNs) to create a Multi-Head block for parallel processing of multiple transformers. This method identifies five unique classes of the most common material found in waste with peak test accuracy of 94.27% using 35492 total parameters, a reduction of 99.74% when compared to current state of the art methods, allowing for lower power operations and easier deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信