使用完全卷积网络和迁移学习的自动脑肿瘤分割

Sinan H. Alkassar, Mohammed A. M. Abdullah, Bilal A. Jebur
{"title":"使用完全卷积网络和迁移学习的自动脑肿瘤分割","authors":"Sinan H. Alkassar, Mohammed A. M. Abdullah, Bilal A. Jebur","doi":"10.1109/ICECCPCE46549.2019.203771","DOIUrl":null,"url":null,"abstract":"Brain tumor segmentation is a challenging issue due to the heterogeneous appearance, shape, and intensity of tumors. In this paper, we present an automatic method for brain tumor segmentation in Magnetic Resonance Imaging (MRI) using deep neural networks (DNN). Transfer learning and fully convolution network (FCN) have been utilized to achieve robust tumor segmentation using VGG-16 network. The proposed architecture of the VGG-16 network includes the encoder and decoder networks with a classification layer to generate the pixel-wise classification. Comparison results demonstrate that the proposed method achieved state-of-the-art results with a global accuracy of 0.97785 and 0.89 dice score in terms of whole tumor segmentation on images from the BRATS2015 database.","PeriodicalId":343983,"journal":{"name":"2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic Brain Tumour Segmentation using fully Convolution Network and Transfer Learning\",\"authors\":\"Sinan H. Alkassar, Mohammed A. M. Abdullah, Bilal A. Jebur\",\"doi\":\"10.1109/ICECCPCE46549.2019.203771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumor segmentation is a challenging issue due to the heterogeneous appearance, shape, and intensity of tumors. In this paper, we present an automatic method for brain tumor segmentation in Magnetic Resonance Imaging (MRI) using deep neural networks (DNN). Transfer learning and fully convolution network (FCN) have been utilized to achieve robust tumor segmentation using VGG-16 network. The proposed architecture of the VGG-16 network includes the encoder and decoder networks with a classification layer to generate the pixel-wise classification. Comparison results demonstrate that the proposed method achieved state-of-the-art results with a global accuracy of 0.97785 and 0.89 dice score in terms of whole tumor segmentation on images from the BRATS2015 database.\",\"PeriodicalId\":343983,\"journal\":{\"name\":\"2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCPCE46549.2019.203771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCPCE46549.2019.203771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

脑肿瘤的分割是一个具有挑战性的问题,由于肿瘤的异质外观,形状和强度。本文提出了一种基于深度神经网络(DNN)的磁共振成像(MRI)脑肿瘤自动分割方法。利用迁移学习和全卷积网络(FCN)实现了VGG-16网络的鲁棒性肿瘤分割。提出的VGG-16网络结构包括编码器和解码器网络,并带有分类层来生成逐像素分类。对比结果表明,本文方法在BRATS2015数据库图像的全肿瘤分割方面取得了较好的效果,全局精度为0.97785,dice score为0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Brain Tumour Segmentation using fully Convolution Network and Transfer Learning
Brain tumor segmentation is a challenging issue due to the heterogeneous appearance, shape, and intensity of tumors. In this paper, we present an automatic method for brain tumor segmentation in Magnetic Resonance Imaging (MRI) using deep neural networks (DNN). Transfer learning and fully convolution network (FCN) have been utilized to achieve robust tumor segmentation using VGG-16 network. The proposed architecture of the VGG-16 network includes the encoder and decoder networks with a classification layer to generate the pixel-wise classification. Comparison results demonstrate that the proposed method achieved state-of-the-art results with a global accuracy of 0.97785 and 0.89 dice score in terms of whole tumor segmentation on images from the BRATS2015 database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信