利用胸部X线分析COVID - 19肺炎严重程度

Narayana Darapaneni, Shweta Ranjane, Uday Shankar Pallavajula Satya, D.Krishna prashanth, M. Reddy, A. Paduri, Aravind Kumar Adhi, Vachaspathi Madabhushanam
{"title":"利用胸部X线分析COVID - 19肺炎严重程度","authors":"Narayana Darapaneni, Shweta Ranjane, Uday Shankar Pallavajula Satya, D.Krishna prashanth, M. Reddy, A. Paduri, Aravind Kumar Adhi, Vachaspathi Madabhushanam","doi":"10.1109/ICIIS51140.2020.9342702","DOIUrl":null,"url":null,"abstract":"Purpose: To identify pneumonia location and determine the severity of pneumonia using deep learning network on chest X-ray images Methods: Data from RSNA Pneumonia detection challenge [1] from Kaggle is used for train and test analysis. Identifying images and calculating severity percentage of lung opacity in pneumonia present images by drawing bounding box Results: With 4668 X-ray images trained and tested on 1500 X-ray images, initial model has shown a mean average precision (mAP) of 0.90 on train set and 0.89 on test set. Conclusion: The intention is to leverage on existing studies and develop a better performing and highly accurate deep learning model to calculate severity percentage in a pneumonia present chest x-ray image.","PeriodicalId":352858,"journal":{"name":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"COVID 19 Severity of Pneumonia Analysis Using Chest X Rays\",\"authors\":\"Narayana Darapaneni, Shweta Ranjane, Uday Shankar Pallavajula Satya, D.Krishna prashanth, M. Reddy, A. Paduri, Aravind Kumar Adhi, Vachaspathi Madabhushanam\",\"doi\":\"10.1109/ICIIS51140.2020.9342702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To identify pneumonia location and determine the severity of pneumonia using deep learning network on chest X-ray images Methods: Data from RSNA Pneumonia detection challenge [1] from Kaggle is used for train and test analysis. Identifying images and calculating severity percentage of lung opacity in pneumonia present images by drawing bounding box Results: With 4668 X-ray images trained and tested on 1500 X-ray images, initial model has shown a mean average precision (mAP) of 0.90 on train set and 0.89 on test set. Conclusion: The intention is to leverage on existing studies and develop a better performing and highly accurate deep learning model to calculate severity percentage in a pneumonia present chest x-ray image.\",\"PeriodicalId\":352858,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIS51140.2020.9342702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIS51140.2020.9342702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

目的:利用深度学习网络对胸部x线图像进行肺炎位置识别和肺炎严重程度判断方法:使用Kaggle的RSNA肺炎检测挑战[1]数据进行训练和测试分析。结果:对4668张x射线图像进行训练,在1500张x射线图像上进行测试,初始模型在训练集上的平均精度(mAP)为0.90,在测试集上的平均精度(mAP)为0.89。结论:目的是利用现有的研究,开发一个性能更好、高度准确的深度学习模型,以计算肺炎胸部x线图像的严重程度百分比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID 19 Severity of Pneumonia Analysis Using Chest X Rays
Purpose: To identify pneumonia location and determine the severity of pneumonia using deep learning network on chest X-ray images Methods: Data from RSNA Pneumonia detection challenge [1] from Kaggle is used for train and test analysis. Identifying images and calculating severity percentage of lung opacity in pneumonia present images by drawing bounding box Results: With 4668 X-ray images trained and tested on 1500 X-ray images, initial model has shown a mean average precision (mAP) of 0.90 on train set and 0.89 on test set. Conclusion: The intention is to leverage on existing studies and develop a better performing and highly accurate deep learning model to calculate severity percentage in a pneumonia present chest x-ray image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信