FPGA图链路预测的边连通Jaccard相似度

P. Sathre, Atharva Gondhalekar, Wu-chun Feng
{"title":"FPGA图链路预测的边连通Jaccard相似度","authors":"P. Sathre, Atharva Gondhalekar, Wu-chun Feng","doi":"10.1109/HPEC55821.2022.9926326","DOIUrl":null,"url":null,"abstract":"Graph analysis is a critical task in many fields, such as social networking, epidemiology, bioinformatics, and fraud de-tection. In particular, understanding and inferring relationships between graph elements lies at the core of many graph-based workloads. Real-world graph workloads and their associated data structures create irregular computational patterns that compli-cate the realization of high-performance kernels. Given these complications, there does not exist a de facto “best” architecture, language, or algorithmic approach that simultaneously balances performance, energy efficiency, portability, and productivity. In this paper, we realize different algorithms of edge-connected Jaccard similarity for graph link prediction and characterize their performance across a broad spectrum of graphs on an Intel Stratix 10 FPGA. By utilizing a high-level synthesis (HLS)-driven, high-productivity approach (via the C++-based SYCL language) we rapidly prototype two implementations - a from-scratch edge-centric version and a faithfully-ported commodity GPU implementation - which would have been intractable via a hardware description language. With these implementations, we further consider the benefit and necessity of four HLS-enabled optimizations, both in isolation and in concert - totaling seven distinct synthesized hardware pipelines. Leveraging real-world graphs of up to 516 million edges, we show empirically-measured speedups of up to 9.5 x over the initial HLS implementations when all optimizations work in concert.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Edge-Connected Jaccard Similarity for Graph Link Prediction on FPGA\",\"authors\":\"P. Sathre, Atharva Gondhalekar, Wu-chun Feng\",\"doi\":\"10.1109/HPEC55821.2022.9926326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph analysis is a critical task in many fields, such as social networking, epidemiology, bioinformatics, and fraud de-tection. In particular, understanding and inferring relationships between graph elements lies at the core of many graph-based workloads. Real-world graph workloads and their associated data structures create irregular computational patterns that compli-cate the realization of high-performance kernels. Given these complications, there does not exist a de facto “best” architecture, language, or algorithmic approach that simultaneously balances performance, energy efficiency, portability, and productivity. In this paper, we realize different algorithms of edge-connected Jaccard similarity for graph link prediction and characterize their performance across a broad spectrum of graphs on an Intel Stratix 10 FPGA. By utilizing a high-level synthesis (HLS)-driven, high-productivity approach (via the C++-based SYCL language) we rapidly prototype two implementations - a from-scratch edge-centric version and a faithfully-ported commodity GPU implementation - which would have been intractable via a hardware description language. With these implementations, we further consider the benefit and necessity of four HLS-enabled optimizations, both in isolation and in concert - totaling seven distinct synthesized hardware pipelines. Leveraging real-world graphs of up to 516 million edges, we show empirically-measured speedups of up to 9.5 x over the initial HLS implementations when all optimizations work in concert.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图形分析是许多领域的关键任务,如社交网络、流行病学、生物信息学和欺诈检测。特别是,理解和推断图元素之间的关系是许多基于图的工作负载的核心。现实世界的图形工作负载及其相关的数据结构创建了不规则的计算模式,使高性能内核的实现复杂化。考虑到这些复杂性,并不存在事实上的“最佳”架构、语言或算法方法,可以同时平衡性能、能源效率、可移植性和生产力。在本文中,我们实现了不同的边缘连接Jaccard相似度算法用于图链接预测,并在Intel Stratix 10 FPGA上表征了它们在广谱图上的性能。通过利用高层次的综合(HLS)驱动,高生产力的方法(通过基于c++的SYCL语言),我们快速原型化两个实现-一个从头开始的边缘中心版本和一个忠实移植的商品GPU实现-这将是难以通过硬件描述语言。对于这些实现,我们进一步考虑了四个支持hls的优化的好处和必要性,这些优化既可以单独进行,也可以协同进行——总共七个不同的合成硬件管道。利用多达5.16亿个边的真实世界图,我们展示了在所有优化协同工作时,与初始HLS实现相比,经验测量的加速高达9.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-Connected Jaccard Similarity for Graph Link Prediction on FPGA
Graph analysis is a critical task in many fields, such as social networking, epidemiology, bioinformatics, and fraud de-tection. In particular, understanding and inferring relationships between graph elements lies at the core of many graph-based workloads. Real-world graph workloads and their associated data structures create irregular computational patterns that compli-cate the realization of high-performance kernels. Given these complications, there does not exist a de facto “best” architecture, language, or algorithmic approach that simultaneously balances performance, energy efficiency, portability, and productivity. In this paper, we realize different algorithms of edge-connected Jaccard similarity for graph link prediction and characterize their performance across a broad spectrum of graphs on an Intel Stratix 10 FPGA. By utilizing a high-level synthesis (HLS)-driven, high-productivity approach (via the C++-based SYCL language) we rapidly prototype two implementations - a from-scratch edge-centric version and a faithfully-ported commodity GPU implementation - which would have been intractable via a hardware description language. With these implementations, we further consider the benefit and necessity of four HLS-enabled optimizations, both in isolation and in concert - totaling seven distinct synthesized hardware pipelines. Leveraging real-world graphs of up to 516 million edges, we show empirically-measured speedups of up to 9.5 x over the initial HLS implementations when all optimizations work in concert.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信