{"title":"量子启发的群体进化算法","authors":"Huang Yourui, Tang Chao-li, Wang Shuang","doi":"10.1109/CIS.WORKSHOPS.2007.233","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel quantum swarm evolution algorithm, called a quantum-inspired swarm evolution algorithm (QSEA), which is based on the concept and principles of quantum computing. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. After the quantum-inspired swarm evolution algorithm is described, the experiment results on the benchmark functions are given to show its efficiency.","PeriodicalId":409737,"journal":{"name":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Quantum-Inspired Swarm Evolution Algorithm\",\"authors\":\"Huang Yourui, Tang Chao-li, Wang Shuang\",\"doi\":\"10.1109/CIS.WORKSHOPS.2007.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel quantum swarm evolution algorithm, called a quantum-inspired swarm evolution algorithm (QSEA), which is based on the concept and principles of quantum computing. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. After the quantum-inspired swarm evolution algorithm is described, the experiment results on the benchmark functions are given to show its efficiency.\",\"PeriodicalId\":409737,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.WORKSHOPS.2007.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.WORKSHOPS.2007.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes a novel quantum swarm evolution algorithm, called a quantum-inspired swarm evolution algorithm (QSEA), which is based on the concept and principles of quantum computing. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. After the quantum-inspired swarm evolution algorithm is described, the experiment results on the benchmark functions are given to show its efficiency.