量子启发的群体进化算法

Huang Yourui, Tang Chao-li, Wang Shuang
{"title":"量子启发的群体进化算法","authors":"Huang Yourui, Tang Chao-li, Wang Shuang","doi":"10.1109/CIS.WORKSHOPS.2007.233","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel quantum swarm evolution algorithm, called a quantum-inspired swarm evolution algorithm (QSEA), which is based on the concept and principles of quantum computing. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. After the quantum-inspired swarm evolution algorithm is described, the experiment results on the benchmark functions are given to show its efficiency.","PeriodicalId":409737,"journal":{"name":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Quantum-Inspired Swarm Evolution Algorithm\",\"authors\":\"Huang Yourui, Tang Chao-li, Wang Shuang\",\"doi\":\"10.1109/CIS.WORKSHOPS.2007.233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel quantum swarm evolution algorithm, called a quantum-inspired swarm evolution algorithm (QSEA), which is based on the concept and principles of quantum computing. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. After the quantum-inspired swarm evolution algorithm is described, the experiment results on the benchmark functions are given to show its efficiency.\",\"PeriodicalId\":409737,\"journal\":{\"name\":\"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.WORKSHOPS.2007.233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.WORKSHOPS.2007.233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于量子计算的概念和原理,提出了一种新的量子群进化算法——量子启发群进化算法(quantum-inspired swarm evolution algorithm, QSEA)。该算法采用量子角表示q位,改进粒子群算法自动更新。在描述了量子启发的群体进化算法之后,给出了在基准函数上的实验结果,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-Inspired Swarm Evolution Algorithm
This paper proposes a novel quantum swarm evolution algorithm, called a quantum-inspired swarm evolution algorithm (QSEA), which is based on the concept and principles of quantum computing. The proposed algorithm adopts quantum angle to express Q-bit and improved particle swarm optimization to update automatically. After the quantum-inspired swarm evolution algorithm is described, the experiment results on the benchmark functions are given to show its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信