二维多项式相位信号的三次相位函数

I. Djurović, Pu Wang, C. Ioana, M. Simeunović
{"title":"二维多项式相位信号的三次相位函数","authors":"I. Djurović, Pu Wang, C. Ioana, M. Simeunović","doi":"10.5281/ZENODO.41882","DOIUrl":null,"url":null,"abstract":"A cubic phase function for two-dimensional polynomial-phase signals of the third order (CPF 2-D) is proposed. The CPF 2-D based estimator is able to obtain all unknown parameters by using reduced number of phase differences, compared to the classical Francos-Friedlander (FF) approach. Statistical analysis shows that the proposed CPF 2-D based estimator is asymptotically unbiased and gives low mean squared error (MSE). Simulation results demonstrate that the proposed approach outperforms the FF approach.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cubic phase function for two-dimensional polynomial-phase signals\",\"authors\":\"I. Djurović, Pu Wang, C. Ioana, M. Simeunović\",\"doi\":\"10.5281/ZENODO.41882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cubic phase function for two-dimensional polynomial-phase signals of the third order (CPF 2-D) is proposed. The CPF 2-D based estimator is able to obtain all unknown parameters by using reduced number of phase differences, compared to the classical Francos-Friedlander (FF) approach. Statistical analysis shows that the proposed CPF 2-D based estimator is asymptotically unbiased and gives low mean squared error (MSE). Simulation results demonstrate that the proposed approach outperforms the FF approach.\",\"PeriodicalId\":409817,\"journal\":{\"name\":\"2010 18th European Signal Processing Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.41882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了三阶二维多项式相位信号的三次相函数。与经典的弗朗索瓦-弗里德兰德(FF)方法相比,基于CPF的二维估计器能够通过减少相位差的数量来获得所有未知参数。统计分析表明,所提出的CPF二维估计量渐近无偏,均方误差(MSE)较低。仿真结果表明,该方法优于FF方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubic phase function for two-dimensional polynomial-phase signals
A cubic phase function for two-dimensional polynomial-phase signals of the third order (CPF 2-D) is proposed. The CPF 2-D based estimator is able to obtain all unknown parameters by using reduced number of phase differences, compared to the classical Francos-Friedlander (FF) approach. Statistical analysis shows that the proposed CPF 2-D based estimator is asymptotically unbiased and gives low mean squared error (MSE). Simulation results demonstrate that the proposed approach outperforms the FF approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信