用边信息测量图的接近度

Hanghang Tong, Huiming Qu, H. Jamjoom
{"title":"用边信息测量图的接近度","authors":"Hanghang Tong, Huiming Qu, H. Jamjoom","doi":"10.1109/ICDM.2008.42","DOIUrl":null,"url":null,"abstract":"This paper studies how to incorporate side information (such as users' feedback) in measuring node proximity on large graphs. Our method (ProSIN) is motivated by the well-studied random walk with restart (RWR). The basic idea behind ProSIN is to leverage side information to refine the graph structure so that the random walk is biased towards/away from some specific zones on the graph. Our case studies demonstrate that ProSIN is well-suited in a variety of applications, including neighborhood search, center-piece subgraphs, and image caption. Given the potential computational complexity of ProSIN, we also propose a fast algorithm (Fast-ProSIN) that exploits the smoothness of the graph structures with/without side information. Our experimental evaluation shows that fast-ProSIN achieves significant speedups (up to 49x) over straightforward implementations.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Measuring Proximity on Graphs with Side Information\",\"authors\":\"Hanghang Tong, Huiming Qu, H. Jamjoom\",\"doi\":\"10.1109/ICDM.2008.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies how to incorporate side information (such as users' feedback) in measuring node proximity on large graphs. Our method (ProSIN) is motivated by the well-studied random walk with restart (RWR). The basic idea behind ProSIN is to leverage side information to refine the graph structure so that the random walk is biased towards/away from some specific zones on the graph. Our case studies demonstrate that ProSIN is well-suited in a variety of applications, including neighborhood search, center-piece subgraphs, and image caption. Given the potential computational complexity of ProSIN, we also propose a fast algorithm (Fast-ProSIN) that exploits the smoothness of the graph structures with/without side information. Our experimental evaluation shows that fast-ProSIN achieves significant speedups (up to 49x) over straightforward implementations.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了如何在大型图的节点接近度测量中引入侧信息(如用户反馈)。我们的方法(ProSIN)是由经过充分研究的随机行走与重启(RWR)驱动的。ProSIN背后的基本思想是利用侧信息来优化图结构,以便随机游走偏向/远离图上的某些特定区域。我们的案例研究表明,ProSIN非常适合各种应用,包括邻域搜索、中心子图和图像标题。考虑到ProSIN潜在的计算复杂性,我们还提出了一种快速算法(fast -ProSIN),该算法利用了带/不带侧信息的图结构的平滑性。我们的实验评估表明,与直接实现相比,fast-ProSIN实现了显著的加速(高达49倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Proximity on Graphs with Side Information
This paper studies how to incorporate side information (such as users' feedback) in measuring node proximity on large graphs. Our method (ProSIN) is motivated by the well-studied random walk with restart (RWR). The basic idea behind ProSIN is to leverage side information to refine the graph structure so that the random walk is biased towards/away from some specific zones on the graph. Our case studies demonstrate that ProSIN is well-suited in a variety of applications, including neighborhood search, center-piece subgraphs, and image caption. Given the potential computational complexity of ProSIN, we also propose a fast algorithm (Fast-ProSIN) that exploits the smoothness of the graph structures with/without side information. Our experimental evaluation shows that fast-ProSIN achieves significant speedups (up to 49x) over straightforward implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信