D. Aruliah, Robert M Corless, L. González-Vega, A. Shakoori
{"title":"Bezout矩阵在拉格朗日基中的几何应用","authors":"D. Aruliah, Robert M Corless, L. González-Vega, A. Shakoori","doi":"10.1145/1277500.1277511","DOIUrl":null,"url":null,"abstract":"Using a new formulation of the Bézout matrix, we construct bivariate matrix polynomials expressed in a tensor-product Lagrange basis. We use these matrix polynomials to solve common tasks in computer-aided geometric design. For example, we show that these bivariate polynomials can serve as stable and efficient implicit representations of plane curves for a variety of curve intersection problems.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Geometric applications of the Bezout matrix in the Lagrange basis\",\"authors\":\"D. Aruliah, Robert M Corless, L. González-Vega, A. Shakoori\",\"doi\":\"10.1145/1277500.1277511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a new formulation of the Bézout matrix, we construct bivariate matrix polynomials expressed in a tensor-product Lagrange basis. We use these matrix polynomials to solve common tasks in computer-aided geometric design. For example, we show that these bivariate polynomials can serve as stable and efficient implicit representations of plane curves for a variety of curve intersection problems.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric applications of the Bezout matrix in the Lagrange basis
Using a new formulation of the Bézout matrix, we construct bivariate matrix polynomials expressed in a tensor-product Lagrange basis. We use these matrix polynomials to solve common tasks in computer-aided geometric design. For example, we show that these bivariate polynomials can serve as stable and efficient implicit representations of plane curves for a variety of curve intersection problems.