Bezout矩阵在拉格朗日基中的几何应用

D. Aruliah, Robert M Corless, L. González-Vega, A. Shakoori
{"title":"Bezout矩阵在拉格朗日基中的几何应用","authors":"D. Aruliah, Robert M Corless, L. González-Vega, A. Shakoori","doi":"10.1145/1277500.1277511","DOIUrl":null,"url":null,"abstract":"Using a new formulation of the Bézout matrix, we construct bivariate matrix polynomials expressed in a tensor-product Lagrange basis. We use these matrix polynomials to solve common tasks in computer-aided geometric design. For example, we show that these bivariate polynomials can serve as stable and efficient implicit representations of plane curves for a variety of curve intersection problems.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Geometric applications of the Bezout matrix in the Lagrange basis\",\"authors\":\"D. Aruliah, Robert M Corless, L. González-Vega, A. Shakoori\",\"doi\":\"10.1145/1277500.1277511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a new formulation of the Bézout matrix, we construct bivariate matrix polynomials expressed in a tensor-product Lagrange basis. We use these matrix polynomials to solve common tasks in computer-aided geometric design. For example, we show that these bivariate polynomials can serve as stable and efficient implicit representations of plane curves for a variety of curve intersection problems.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

利用bsamzout矩阵的一种新形式,构造了用张量积拉格朗日基表示的二元矩阵多项式。我们使用这些矩阵多项式来解决计算机辅助几何设计中的常见问题。例如,我们证明了这些二元多项式可以作为各种曲线相交问题的平面曲线的稳定有效的隐式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric applications of the Bezout matrix in the Lagrange basis
Using a new formulation of the Bézout matrix, we construct bivariate matrix polynomials expressed in a tensor-product Lagrange basis. We use these matrix polynomials to solve common tasks in computer-aided geometric design. For example, we show that these bivariate polynomials can serve as stable and efficient implicit representations of plane curves for a variety of curve intersection problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信