{"title":"加密货币交易的基本多因素深度学习策略","authors":"Yinghe Qing, Jifeng Sun, Ying Kong, Jianwu Lin","doi":"10.1109/INDIN51773.2022.9976116","DOIUrl":null,"url":null,"abstract":"This paper investigates how to use deep learning methods to combine with traditional multi-factor models and construct a quantitative trading model based on an AutoEncoder algorithm (AE) to classify cryptocurrencies since 2009, so as to screen out ones with investment value and then construct an effective investment portfolio. The AE algorithm is capable of handling high-dimensional data and mining interfactor non-linearities. Our empirical results on cryptocurrencies show that the model outperforms single-type factors and benchmark in terms of Cumulative Returns and the Sharpe Ratio.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fundamental Multi-factor Deep-learning Strategy For Cryptocurrency Trading\",\"authors\":\"Yinghe Qing, Jifeng Sun, Ying Kong, Jianwu Lin\",\"doi\":\"10.1109/INDIN51773.2022.9976116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates how to use deep learning methods to combine with traditional multi-factor models and construct a quantitative trading model based on an AutoEncoder algorithm (AE) to classify cryptocurrencies since 2009, so as to screen out ones with investment value and then construct an effective investment portfolio. The AE algorithm is capable of handling high-dimensional data and mining interfactor non-linearities. Our empirical results on cryptocurrencies show that the model outperforms single-type factors and benchmark in terms of Cumulative Returns and the Sharpe Ratio.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fundamental Multi-factor Deep-learning Strategy For Cryptocurrency Trading
This paper investigates how to use deep learning methods to combine with traditional multi-factor models and construct a quantitative trading model based on an AutoEncoder algorithm (AE) to classify cryptocurrencies since 2009, so as to screen out ones with investment value and then construct an effective investment portfolio. The AE algorithm is capable of handling high-dimensional data and mining interfactor non-linearities. Our empirical results on cryptocurrencies show that the model outperforms single-type factors and benchmark in terms of Cumulative Returns and the Sharpe Ratio.