Erna Nurmawati, Adielia Amanda
{"title":"ANALISIS SENTIMEN DAN PEMODELAN TOPIK PADA TWEET TERKAIT DATA BADAN PUSAT STATISTIK","authors":"Erna Nurmawati, Adielia Amanda","doi":"10.47080/simika.v6i2.2789","DOIUrl":null,"url":null,"abstract":"Annually, the Central Bureau of Statistics, known in Indonesia as BPS or Badan Pusat Statistik, conducts a routine Data Needs Survey (Survei Kebutuhan Data or SKD) to identify data requirements and the level of consumer satisfaction with the quality of data produced by BPS. However, SKD respondents are limited to consumers who have received services from the Integrated Statistics Services (Pelayanan Statistik Terpadu or PST) unit at BPS within a specific year. To gather opinions from the wider public accessing BPS data through channels other than the PST unit, an alternative approach is necessary – particularly through social media, specifically Twitter. \nThis study employs Twitter data to analyze public sentiment regarding BPS data. To understand the distribution of topics discussed within the community about BPS data indicators, topic modeling has been employed. The sentiment analysis process utilizes IndoBERT, an Indonesian language Bidirectional Encoder Representations from Transformers (BERT) model. For topic modeling, the Latent Dirichlet Allocation (LDA) method is utilized. \nThe results of sentiment analysis during the period 2020 - 2022 reveal that tweets related to BPS data generally convey a neutral sentiment. Meanwhile, the topic modeling process generates a range of topics, with variations observed in each year. Throughout 2020 - 2022, the most frequently discussed topics align with the statistical data from the 2020 - 2022 Data Needs Survey's data requirements section, reflecting the diversity of data needs.","PeriodicalId":443734,"journal":{"name":"Jurnal Sistem Informasi dan Informatika (Simika)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi dan Informatika (Simika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47080/simika.v6i2.2789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每年,中央统计局(在印度尼西亚称为BPS或Badan Pusat Statistics)进行例行数据需求调查(Survei Kebutuhan Data或SKD),以确定数据需求和消费者对BPS提供的数据质量的满意程度。然而,SKD的受访者仅限于在特定年份内接受过BPS综合统计服务(Pelayanan statisticterpadu或PST)部门服务的消费者。为了从通过PST部门以外的渠道访问BPS数据的更广泛的公众那里收集意见,需要一种替代方法-特别是通过社交媒体,特别是Twitter。本研究采用Twitter数据分析公众对BPS数据的看法。为了了解社区内讨论的关于BPS数据指标的主题分布,采用了主题建模。情感分析过程使用IndoBERT,一种印尼语双向编码器表示从变形金刚(BERT)模型。主题建模采用潜狄利克雷分配(Latent Dirichlet Allocation, LDA)方法。2020 - 2022年期间的情绪分析结果显示,与BPS数据相关的推文通常传达中性情绪。同时,主题建模过程产生了一系列主题,每年都有变化。在2020 - 2022年期间,最常讨论的主题与2020 - 2022年数据需求调查的数据需求部分的统计数据一致,反映了数据需求的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS SENTIMEN DAN PEMODELAN TOPIK PADA TWEET TERKAIT DATA BADAN PUSAT STATISTIK
Annually, the Central Bureau of Statistics, known in Indonesia as BPS or Badan Pusat Statistik, conducts a routine Data Needs Survey (Survei Kebutuhan Data or SKD) to identify data requirements and the level of consumer satisfaction with the quality of data produced by BPS. However, SKD respondents are limited to consumers who have received services from the Integrated Statistics Services (Pelayanan Statistik Terpadu or PST) unit at BPS within a specific year. To gather opinions from the wider public accessing BPS data through channels other than the PST unit, an alternative approach is necessary – particularly through social media, specifically Twitter. This study employs Twitter data to analyze public sentiment regarding BPS data. To understand the distribution of topics discussed within the community about BPS data indicators, topic modeling has been employed. The sentiment analysis process utilizes IndoBERT, an Indonesian language Bidirectional Encoder Representations from Transformers (BERT) model. For topic modeling, the Latent Dirichlet Allocation (LDA) method is utilized. The results of sentiment analysis during the period 2020 - 2022 reveal that tweets related to BPS data generally convey a neutral sentiment. Meanwhile, the topic modeling process generates a range of topics, with variations observed in each year. Throughout 2020 - 2022, the most frequently discussed topics align with the statistical data from the 2020 - 2022 Data Needs Survey's data requirements section, reflecting the diversity of data needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信