一种基于可调变分自编码器的学生动作识别算法

Simin Li, Yaping Dai, Ye Ji, K. Hirota, Wei Dai
{"title":"一种基于可调变分自编码器的学生动作识别算法","authors":"Simin Li, Yaping Dai, Ye Ji, K. Hirota, Wei Dai","doi":"10.1109/CCDC52312.2021.9601627","DOIUrl":null,"url":null,"abstract":"Student action recognition plays an important role in detecting students learning behaivor in online courses. In order to improve the accuracy of student action recognition in classroom, an algorithm based on Adjusted Variational Auto Encoder (AVAE) is proposed. By adjusting the traditional Variational Auto Encoder (VAE) method, the proposed algorithm can effectively extract the characteristic parameters of students from classroom video images, and then recognize the students' action. Experiments show that the proposed algorithm for student action recognition preforms better than traditional VAE algorithms with higher accuracy and convergence speed, and improves the recognition accuracy by 5.13% compared with traditional Convolutional Neural Network (CNN) method.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Student Action Recognition Algorithm Based on Adjusted Variational Auto Encoder\",\"authors\":\"Simin Li, Yaping Dai, Ye Ji, K. Hirota, Wei Dai\",\"doi\":\"10.1109/CCDC52312.2021.9601627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Student action recognition plays an important role in detecting students learning behaivor in online courses. In order to improve the accuracy of student action recognition in classroom, an algorithm based on Adjusted Variational Auto Encoder (AVAE) is proposed. By adjusting the traditional Variational Auto Encoder (VAE) method, the proposed algorithm can effectively extract the characteristic parameters of students from classroom video images, and then recognize the students' action. Experiments show that the proposed algorithm for student action recognition preforms better than traditional VAE algorithms with higher accuracy and convergence speed, and improves the recognition accuracy by 5.13% compared with traditional Convolutional Neural Network (CNN) method.\",\"PeriodicalId\":143976,\"journal\":{\"name\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC52312.2021.9601627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9601627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学生行为识别在网络课程中对学生学习行为的检测起着重要的作用。为了提高课堂中学生动作识别的准确性,提出了一种基于可调变分自动编码器(AVAE)的课堂动作识别算法。该算法通过对传统的变分自编码器(VAE)方法进行调整,可以有效地从课堂视频图像中提取学生的特征参数,进而对学生的动作进行识别。实验表明,该算法在学生动作识别方面优于传统的VAE算法,具有更高的准确率和收敛速度,与传统的卷积神经网络(CNN)方法相比,识别准确率提高了5.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Student Action Recognition Algorithm Based on Adjusted Variational Auto Encoder
Student action recognition plays an important role in detecting students learning behaivor in online courses. In order to improve the accuracy of student action recognition in classroom, an algorithm based on Adjusted Variational Auto Encoder (AVAE) is proposed. By adjusting the traditional Variational Auto Encoder (VAE) method, the proposed algorithm can effectively extract the characteristic parameters of students from classroom video images, and then recognize the students' action. Experiments show that the proposed algorithm for student action recognition preforms better than traditional VAE algorithms with higher accuracy and convergence speed, and improves the recognition accuracy by 5.13% compared with traditional Convolutional Neural Network (CNN) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信