基于免疫遗传算法优化的火灾探测器热隧道神经网络控制

Yunfeng Bu, Yi Shen
{"title":"基于免疫遗传算法优化的火灾探测器热隧道神经网络控制","authors":"Yunfeng Bu, Yi Shen","doi":"10.1109/ICINIS.2008.50","DOIUrl":null,"url":null,"abstract":"To realize the adaptive control in the heat tunnel system of fire detector, an adaptive PID control algorithm based on BP network and immune genetic algorithm (IGA) is presented. Firstly, the immune genetic algorithm is used to optimize the weights of BP network, which reduces the influence of control effect due to initial network weights; secondly, the PID parameters are adjusted on line based on the BP network during the control of heat tunnel. Experiment results show that this control algorithm is effective. Compared to other algorithms, the proposed algorithm owns high control precision, suppression capacity to noise and disturbance, and strong robustness.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network Control Based on Optimization of Immune Genetic Algorithm for Heat Tunnel of Fire Detector\",\"authors\":\"Yunfeng Bu, Yi Shen\",\"doi\":\"10.1109/ICINIS.2008.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize the adaptive control in the heat tunnel system of fire detector, an adaptive PID control algorithm based on BP network and immune genetic algorithm (IGA) is presented. Firstly, the immune genetic algorithm is used to optimize the weights of BP network, which reduces the influence of control effect due to initial network weights; secondly, the PID parameters are adjusted on line based on the BP network during the control of heat tunnel. Experiment results show that this control algorithm is effective. Compared to other algorithms, the proposed algorithm owns high control precision, suppression capacity to noise and disturbance, and strong robustness.\",\"PeriodicalId\":185739,\"journal\":{\"name\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on Intelligent Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINIS.2008.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了实现火灾探测器热隧道系统的自适应控制,提出了一种基于BP网络和免疫遗传算法(IGA)的自适应PID控制算法。首先,利用免疫遗传算法对BP网络权值进行优化,降低了初始网络权值对控制效果的影响;其次,在热隧道控制过程中,基于BP网络对PID参数进行在线调整;实验结果表明,该控制算法是有效的。与其他算法相比,该算法具有较高的控制精度、对噪声和干扰的抑制能力和较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Control Based on Optimization of Immune Genetic Algorithm for Heat Tunnel of Fire Detector
To realize the adaptive control in the heat tunnel system of fire detector, an adaptive PID control algorithm based on BP network and immune genetic algorithm (IGA) is presented. Firstly, the immune genetic algorithm is used to optimize the weights of BP network, which reduces the influence of control effect due to initial network weights; secondly, the PID parameters are adjusted on line based on the BP network during the control of heat tunnel. Experiment results show that this control algorithm is effective. Compared to other algorithms, the proposed algorithm owns high control precision, suppression capacity to noise and disturbance, and strong robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信