基于RNNPB的情绪激发人类行为感知

Jie Li, Chenguang Yang, Junpei Zhong, Shi‐Lu Dai
{"title":"基于RNNPB的情绪激发人类行为感知","authors":"Jie Li, Chenguang Yang, Junpei Zhong, Shi‐Lu Dai","doi":"10.1109/ICMIC.2018.8529875","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel framework to recognize emotions using the algorithm of a recurrent neural network with parameter bias (RNNPB). For this purpose, we performed three simulation experiments aim to explore the relationship between the perception and action. Three types of emotion-driven sequences are fed into the network for training. The training of RNNPB utilizes back-propagation through time (BPTT) method and the parametric bias unit (PB unit) updates in a self-organizing way. The results of the experiments show that the merged sequences can distinguish the emotion better compared to the other two kinds of information.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Emotion-Aroused Human Behaviors Perception Using RNNPB\",\"authors\":\"Jie Li, Chenguang Yang, Junpei Zhong, Shi‐Lu Dai\",\"doi\":\"10.1109/ICMIC.2018.8529875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel framework to recognize emotions using the algorithm of a recurrent neural network with parameter bias (RNNPB). For this purpose, we performed three simulation experiments aim to explore the relationship between the perception and action. Three types of emotion-driven sequences are fed into the network for training. The training of RNNPB utilizes back-propagation through time (BPTT) method and the parametric bias unit (PB unit) updates in a self-organizing way. The results of the experiments show that the merged sequences can distinguish the emotion better compared to the other two kinds of information.\",\"PeriodicalId\":262938,\"journal\":{\"name\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2018.8529875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于参数偏差的递归神经网络算法的情绪识别框架。为此,我们进行了三个模拟实验,旨在探讨感知与行动之间的关系。三种类型的情绪驱动序列被输入网络进行训练。RNNPB的训练采用随时间反向传播(BPTT)方法,参数偏置单元(PB单元)以自组织方式更新。实验结果表明,与其他两种信息相比,合并序列能更好地识别情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion-Aroused Human Behaviors Perception Using RNNPB
This paper proposes a novel framework to recognize emotions using the algorithm of a recurrent neural network with parameter bias (RNNPB). For this purpose, we performed three simulation experiments aim to explore the relationship between the perception and action. Three types of emotion-driven sequences are fed into the network for training. The training of RNNPB utilizes back-propagation through time (BPTT) method and the parametric bias unit (PB unit) updates in a self-organizing way. The results of the experiments show that the merged sequences can distinguish the emotion better compared to the other two kinds of information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信