基于hmm的分类器组合方案及其在手写识别中的应用

Simon Günter, H. Bunke
{"title":"基于hmm的分类器组合方案及其在手写识别中的应用","authors":"Simon Günter, H. Bunke","doi":"10.1109/ICPR.2002.1048307","DOIUrl":null,"url":null,"abstract":"Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. The combination of multiple classifiers has been proven to be able to increase the recognition rate when compared to single classifiers. In this paper a new combination method for HMM based handwritten word recognizers is introduced. In contrast with many other multiple classifier combination schemes, where the combination takes place at the decision level, the proposed method combines various HMMs at a more elementary level. The usefulness of the new method is experimentally demonstrated in the context of a handwritten word recognition task.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A new combination scheme for HMM-based classifiers and its application to handwriting recognition\",\"authors\":\"Simon Günter, H. Bunke\",\"doi\":\"10.1109/ICPR.2002.1048307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. The combination of multiple classifiers has been proven to be able to increase the recognition rate when compared to single classifiers. In this paper a new combination method for HMM based handwritten word recognizers is introduced. In contrast with many other multiple classifier combination schemes, where the combination takes place at the decision level, the proposed method combines various HMMs at a more elementary level. The usefulness of the new method is experimentally demonstrated in the context of a handwritten word recognition task.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

手写体文本识别是模式识别领域的难点之一。与单个分类器相比,多个分类器的组合已被证明能够提高识别率。本文介绍了一种新的基于HMM的手写体词识别器组合方法。与许多其他多分类器组合方案相比,其中组合发生在决策级别,所提出的方法在更初级的级别上组合各种hmm。在一个手写单词识别任务的背景下,实验证明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new combination scheme for HMM-based classifiers and its application to handwriting recognition
Handwritten text recognition is one of the most difficult problems in the field of pattern recognition. The combination of multiple classifiers has been proven to be able to increase the recognition rate when compared to single classifiers. In this paper a new combination method for HMM based handwritten word recognizers is introduced. In contrast with many other multiple classifier combination schemes, where the combination takes place at the decision level, the proposed method combines various HMMs at a more elementary level. The usefulness of the new method is experimentally demonstrated in the context of a handwritten word recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信