ISAR成像中选择回波数的图像锐化

Yizhou Chen, Junfeng Wang
{"title":"ISAR成像中选择回波数的图像锐化","authors":"Yizhou Chen, Junfeng Wang","doi":"10.1109/ICSPCC55723.2022.9984589","DOIUrl":null,"url":null,"abstract":"An algorithm is developed to sharpen the image by selecting the number of echoes in ISAR imaging. Entropy is used to measure the sharpness of the image: smaller entropy means larger sharpness. The number of echoes is selected to minimize the entropy of the image. In the optimization, the azimuth discrete Fourier transform of each round is computed from the azimuth discrete Fourier transform of last round. This improves the computational efficiency significantly. The results of field data indicate the effectiveness of this algorithm.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Sharpening by Selecting Number of Echoes in ISAR Imaging\",\"authors\":\"Yizhou Chen, Junfeng Wang\",\"doi\":\"10.1109/ICSPCC55723.2022.9984589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is developed to sharpen the image by selecting the number of echoes in ISAR imaging. Entropy is used to measure the sharpness of the image: smaller entropy means larger sharpness. The number of echoes is selected to minimize the entropy of the image. In the optimization, the azimuth discrete Fourier transform of each round is computed from the azimuth discrete Fourier transform of last round. This improves the computational efficiency significantly. The results of field data indicate the effectiveness of this algorithm.\",\"PeriodicalId\":346917,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCC55723.2022.9984589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种通过选择ISAR成像回波数来锐化图像的算法。熵用来衡量图像的清晰度:熵越小,清晰度越大。选择回声的数量以最小化图像的熵。在优化中,由上一轮的方位角离散傅里叶变换计算每一轮的方位角离散傅里叶变换。这大大提高了计算效率。现场实测数据表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Sharpening by Selecting Number of Echoes in ISAR Imaging
An algorithm is developed to sharpen the image by selecting the number of echoes in ISAR imaging. Entropy is used to measure the sharpness of the image: smaller entropy means larger sharpness. The number of echoes is selected to minimize the entropy of the image. In the optimization, the azimuth discrete Fourier transform of each round is computed from the azimuth discrete Fourier transform of last round. This improves the computational efficiency significantly. The results of field data indicate the effectiveness of this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信