求解代数方程组

SIGSAM Bull. Pub Date : 2001-09-01 DOI:10.1145/569746.569750
D. Lazard
{"title":"求解代数方程组","authors":"D. Lazard","doi":"10.1145/569746.569750","DOIUrl":null,"url":null,"abstract":"Let f1,…,fk be k multivariate polynomials which have a finite number of common zeros in the algebraic closure of the ground field, counting the common zeros at infinity. An algorithm is given and proved which reduces the computations of these zeros to the resolution of a single univariate equation whose degree is the number of common zeros. This algorithm gives the whole algebraic and geometric structure of the set of zeros (multiplicities, conjugate zeros,…). When all the polynomials have the same degree, the complexity of this algorithm is polynomial relative to the generic number of solutions.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Solving systems of algebraic equations\",\"authors\":\"D. Lazard\",\"doi\":\"10.1145/569746.569750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f1,…,fk be k multivariate polynomials which have a finite number of common zeros in the algebraic closure of the ground field, counting the common zeros at infinity. An algorithm is given and proved which reduces the computations of these zeros to the resolution of a single univariate equation whose degree is the number of common zeros. This algorithm gives the whole algebraic and geometric structure of the set of zeros (multiplicities, conjugate zeros,…). When all the polynomials have the same degree, the complexity of this algorithm is polynomial relative to the generic number of solutions.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/569746.569750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/569746.569750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

设f1,…,fk为k个多元多项式,它们在地场的代数闭包中有有限个数的公零,在无穷远处计算公零。给出并证明了一种算法,该算法将这些零的计算简化为单个单变量方程的解,该方程的阶数为公共零的个数。该算法给出了零集合的整体代数和几何结构(多重、共轭零等)。当所有多项式的阶数相同时,该算法的复杂度相对于解的一般数是多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving systems of algebraic equations
Let f1,…,fk be k multivariate polynomials which have a finite number of common zeros in the algebraic closure of the ground field, counting the common zeros at infinity. An algorithm is given and proved which reduces the computations of these zeros to the resolution of a single univariate equation whose degree is the number of common zeros. This algorithm gives the whole algebraic and geometric structure of the set of zeros (multiplicities, conjugate zeros,…). When all the polynomials have the same degree, the complexity of this algorithm is polynomial relative to the generic number of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信