具有最小加权完成时间和最大允许延迟的单机调度问题

S. Chand, H. Schneeberger
{"title":"具有最小加权完成时间和最大允许延迟的单机调度问题","authors":"S. Chand, H. Schneeberger","doi":"10.1002/NAV.3800330319","DOIUrl":null,"url":null,"abstract":"This paper analyzes the Smith‐heuristic for the single‐machine scheduling problem where the objective is to minimize the total weighted completion time subject to the constraint that the tradiness for any job does not exceed a prespecified maximum allowable tardiness. We identify several cases of this problem for which the Smith‐heuristic is guaranteed to lead to optimal solutions. We also provide a worst‐case analysis of the Smith‐heuristic; the analysis shows that the fractional increase in the objective function value for the Smith‐heuristic from the optimal solution is unbounded in the worst case.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A note on the single-machine scheduling problem with minimum weighted completion time and maximum allowable tardiness\",\"authors\":\"S. Chand, H. Schneeberger\",\"doi\":\"10.1002/NAV.3800330319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the Smith‐heuristic for the single‐machine scheduling problem where the objective is to minimize the total weighted completion time subject to the constraint that the tradiness for any job does not exceed a prespecified maximum allowable tardiness. We identify several cases of this problem for which the Smith‐heuristic is guaranteed to lead to optimal solutions. We also provide a worst‐case analysis of the Smith‐heuristic; the analysis shows that the fractional increase in the objective function value for the Smith‐heuristic from the optimal solution is unbounded in the worst case.\",\"PeriodicalId\":431817,\"journal\":{\"name\":\"Naval Research Logistics Quarterly\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/NAV.3800330319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本文分析了单机调度问题的史密斯启发式算法,该问题的目标是在任何作业的交易不超过预先规定的最大允许延迟的约束下最小化总加权完成时间。我们确定了这个问题的几个例子,其中史密斯启发式保证导致最优解。我们还提供了史密斯启发式的最坏情况分析;分析表明,在最坏情况下,史密斯启发式算法的目标函数值与最优解的分数递增是无界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the single-machine scheduling problem with minimum weighted completion time and maximum allowable tardiness
This paper analyzes the Smith‐heuristic for the single‐machine scheduling problem where the objective is to minimize the total weighted completion time subject to the constraint that the tradiness for any job does not exceed a prespecified maximum allowable tardiness. We identify several cases of this problem for which the Smith‐heuristic is guaranteed to lead to optimal solutions. We also provide a worst‐case analysis of the Smith‐heuristic; the analysis shows that the fractional increase in the objective function value for the Smith‐heuristic from the optimal solution is unbounded in the worst case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信