基于云的移动深度相机实时数据大规模三维重建

Steven Bohez, Jaron Couvreur, B. Dhoedt, P. Simoens
{"title":"基于云的移动深度相机实时数据大规模三维重建","authors":"Steven Bohez, Jaron Couvreur, B. Dhoedt, P. Simoens","doi":"10.1145/2802130.2802134","DOIUrl":null,"url":null,"abstract":"Measuring the distance between observed objects and the camera, depth cameras on mobile devices are a leverage to more accurate and innovative vision-based applications. In this article, we present the initial design of a distributed cloudlet-based system that integrates depth maps crowd-sourced from mobile devices and head-mounted displays into a global 3D world model. To ensure fast enough processing of depth frames for real-time vision applications, the model is automatically split over multiple VMs when it becomes too large. By geographically distributing the VMs with submodels across cloudlets, our system provides the model as building block to low latency vision-based applications without overwhelming the network.","PeriodicalId":441255,"journal":{"name":"International Workshop on Multiple Classifier Systems","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cloudlet-based Large-scale 3D Reconstruction Using Real-time Data from Mobile Depth Cameras\",\"authors\":\"Steven Bohez, Jaron Couvreur, B. Dhoedt, P. Simoens\",\"doi\":\"10.1145/2802130.2802134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring the distance between observed objects and the camera, depth cameras on mobile devices are a leverage to more accurate and innovative vision-based applications. In this article, we present the initial design of a distributed cloudlet-based system that integrates depth maps crowd-sourced from mobile devices and head-mounted displays into a global 3D world model. To ensure fast enough processing of depth frames for real-time vision applications, the model is automatically split over multiple VMs when it becomes too large. By geographically distributing the VMs with submodels across cloudlets, our system provides the model as building block to low latency vision-based applications without overwhelming the network.\",\"PeriodicalId\":441255,\"journal\":{\"name\":\"International Workshop on Multiple Classifier Systems\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Multiple Classifier Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2802130.2802134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Multiple Classifier Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2802130.2802134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

移动设备上的深度相机测量观察对象与相机之间的距离,是更准确和创新的基于视觉的应用的杠杆。在本文中,我们介绍了一个基于分布式云的系统的初步设计,该系统将来自移动设备和头戴式显示器的众包深度地图集成到一个全球3D世界模型中。为了确保实时视觉应用的深度帧处理速度足够快,当模型变得太大时,会自动拆分到多个vm上。通过跨cloudlets地理分布具有子模型的vm,我们的系统将模型作为构建块提供给低延迟的基于视觉的应用程序,而不会使网络不堪重负。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloudlet-based Large-scale 3D Reconstruction Using Real-time Data from Mobile Depth Cameras
Measuring the distance between observed objects and the camera, depth cameras on mobile devices are a leverage to more accurate and innovative vision-based applications. In this article, we present the initial design of a distributed cloudlet-based system that integrates depth maps crowd-sourced from mobile devices and head-mounted displays into a global 3D world model. To ensure fast enough processing of depth frames for real-time vision applications, the model is automatically split over multiple VMs when it becomes too large. By geographically distributing the VMs with submodels across cloudlets, our system provides the model as building block to low latency vision-based applications without overwhelming the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信