谱三元组和$\zeta$-循环

A. Connes, C. Consani
{"title":"谱三元组和$\\zeta$-循环","authors":"A. Connes, C. Consani","doi":"10.4171/lem/1049","DOIUrl":null,"url":null,"abstract":"We exhibit very small eigenvalues of the quadratic form associated to the Weil explicit formulas restricted to test functions whose support is within a fixed interval with upper bound S. We show both numerically and conceptually that the associated eigenvectors are obtained by a simple arithmetic operation of finite sum using prolate spheroidal wave functions associated to the scale S. Then we use these functions to condition the canonical spectral triple of the circle of length L=2 Log(S) in such a way that they belong to the kernel of the perturbed Dirac operator. We give numerical evidence that, when one varies L, the low lying spectrum of the perturbed spectral triple resembles the low lying zeros of the Riemann zeta function. We justify conceptually this result and show that, for each eigenvalue, the coincidence is perfect for the special values of the length L of the circle for which the two natural ways of realizing the perturbation give the same eigenvalue. This fact is tested numerically by reproducing the first thirty one zeros of the Riemann zeta function from our spectral side, and estimate the probability of having obtained this agreement at random, as a very small number whose first fifty decimal places are all zero. The theoretical concept which emerges is that of zeta cycle and our main result establishes its relation with the critical zeros of the Riemann zeta function and with the spectral realization of these zeros obtained by the first author.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spectral triples and $\\\\zeta$-cycles\",\"authors\":\"A. Connes, C. Consani\",\"doi\":\"10.4171/lem/1049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit very small eigenvalues of the quadratic form associated to the Weil explicit formulas restricted to test functions whose support is within a fixed interval with upper bound S. We show both numerically and conceptually that the associated eigenvectors are obtained by a simple arithmetic operation of finite sum using prolate spheroidal wave functions associated to the scale S. Then we use these functions to condition the canonical spectral triple of the circle of length L=2 Log(S) in such a way that they belong to the kernel of the perturbed Dirac operator. We give numerical evidence that, when one varies L, the low lying spectrum of the perturbed spectral triple resembles the low lying zeros of the Riemann zeta function. We justify conceptually this result and show that, for each eigenvalue, the coincidence is perfect for the special values of the length L of the circle for which the two natural ways of realizing the perturbation give the same eigenvalue. This fact is tested numerically by reproducing the first thirty one zeros of the Riemann zeta function from our spectral side, and estimate the probability of having obtained this agreement at random, as a very small number whose first fifty decimal places are all zero. The theoretical concept which emerges is that of zeta cycle and our main result establishes its relation with the critical zeros of the Riemann zeta function and with the spectral realization of these zeros obtained by the first author.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们展示了与Weil显式公式相关的二次型特征值的非常小的特征值,这些特征值被限制在具有上界S的固定区间内的测试函数。我们从数值和概念上证明了相关的特征向量是通过与尺度S相关的长球面波函数的有限和的简单算术运算获得的。然后我们使用这些函数来条件长度为L=2 Log(S)的圆的正则谱三重使它们属于摄动狄拉克算子的核。我们给出了数值证据,当1改变L时,摄动谱三重体的低洼谱类似于黎曼ζ函数的低洼零点。我们从概念上证明了这一结果,并表明,对于每个特征值,对于圆长度L的特殊值,实现扰动的两种自然方式给出相同的特征值,这一巧合是完美的。这一事实是通过从我们的谱侧再现黎曼ζ函数的前31个零来进行数值测试的,并估计随机获得这种一致性的概率,作为一个非常小的数字,其小数点后50位都是零。出现的理论概念是zeta循环,我们的主要结果建立了它与黎曼zeta函数的临界零点和第一作者得到的这些零点的谱实现的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral triples and $\zeta$-cycles
We exhibit very small eigenvalues of the quadratic form associated to the Weil explicit formulas restricted to test functions whose support is within a fixed interval with upper bound S. We show both numerically and conceptually that the associated eigenvectors are obtained by a simple arithmetic operation of finite sum using prolate spheroidal wave functions associated to the scale S. Then we use these functions to condition the canonical spectral triple of the circle of length L=2 Log(S) in such a way that they belong to the kernel of the perturbed Dirac operator. We give numerical evidence that, when one varies L, the low lying spectrum of the perturbed spectral triple resembles the low lying zeros of the Riemann zeta function. We justify conceptually this result and show that, for each eigenvalue, the coincidence is perfect for the special values of the length L of the circle for which the two natural ways of realizing the perturbation give the same eigenvalue. This fact is tested numerically by reproducing the first thirty one zeros of the Riemann zeta function from our spectral side, and estimate the probability of having obtained this agreement at random, as a very small number whose first fifty decimal places are all zero. The theoretical concept which emerges is that of zeta cycle and our main result establishes its relation with the critical zeros of the Riemann zeta function and with the spectral realization of these zeros obtained by the first author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信